Factor
25\left(x-\frac{72-8\sqrt{106}}{25}\right)\left(x-\frac{8\sqrt{106}+72}{25}\right)
Evaluate
25x^{2}-144x-64
Graph
Share
Copied to clipboard
25x^{2}-144x-64=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-144\right)±\sqrt{\left(-144\right)^{2}-4\times 25\left(-64\right)}}{2\times 25}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-144\right)±\sqrt{20736-4\times 25\left(-64\right)}}{2\times 25}
Square -144.
x=\frac{-\left(-144\right)±\sqrt{20736-100\left(-64\right)}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-144\right)±\sqrt{20736+6400}}{2\times 25}
Multiply -100 times -64.
x=\frac{-\left(-144\right)±\sqrt{27136}}{2\times 25}
Add 20736 to 6400.
x=\frac{-\left(-144\right)±16\sqrt{106}}{2\times 25}
Take the square root of 27136.
x=\frac{144±16\sqrt{106}}{2\times 25}
The opposite of -144 is 144.
x=\frac{144±16\sqrt{106}}{50}
Multiply 2 times 25.
x=\frac{16\sqrt{106}+144}{50}
Now solve the equation x=\frac{144±16\sqrt{106}}{50} when ± is plus. Add 144 to 16\sqrt{106}.
x=\frac{8\sqrt{106}+72}{25}
Divide 144+16\sqrt{106} by 50.
x=\frac{144-16\sqrt{106}}{50}
Now solve the equation x=\frac{144±16\sqrt{106}}{50} when ± is minus. Subtract 16\sqrt{106} from 144.
x=\frac{72-8\sqrt{106}}{25}
Divide 144-16\sqrt{106} by 50.
25x^{2}-144x-64=25\left(x-\frac{8\sqrt{106}+72}{25}\right)\left(x-\frac{72-8\sqrt{106}}{25}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{72+8\sqrt{106}}{25} for x_{1} and \frac{72-8\sqrt{106}}{25} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}