Factor
5\left(x+5\right)\left(5x+4\right)
Evaluate
5\left(x+5\right)\left(5x+4\right)
Graph
Share
Copied to clipboard
5\left(5x^{2}+29x+20\right)
Factor out 5.
a+b=29 ab=5\times 20=100
Consider 5x^{2}+29x+20. Factor the expression by grouping. First, the expression needs to be rewritten as 5x^{2}+ax+bx+20. To find a and b, set up a system to be solved.
1,100 2,50 4,25 5,20 10,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 100.
1+100=101 2+50=52 4+25=29 5+20=25 10+10=20
Calculate the sum for each pair.
a=4 b=25
The solution is the pair that gives sum 29.
\left(5x^{2}+4x\right)+\left(25x+20\right)
Rewrite 5x^{2}+29x+20 as \left(5x^{2}+4x\right)+\left(25x+20\right).
x\left(5x+4\right)+5\left(5x+4\right)
Factor out x in the first and 5 in the second group.
\left(5x+4\right)\left(x+5\right)
Factor out common term 5x+4 by using distributive property.
5\left(5x+4\right)\left(x+5\right)
Rewrite the complete factored expression.
25x^{2}+145x+100=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-145±\sqrt{145^{2}-4\times 25\times 100}}{2\times 25}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-145±\sqrt{21025-4\times 25\times 100}}{2\times 25}
Square 145.
x=\frac{-145±\sqrt{21025-100\times 100}}{2\times 25}
Multiply -4 times 25.
x=\frac{-145±\sqrt{21025-10000}}{2\times 25}
Multiply -100 times 100.
x=\frac{-145±\sqrt{11025}}{2\times 25}
Add 21025 to -10000.
x=\frac{-145±105}{2\times 25}
Take the square root of 11025.
x=\frac{-145±105}{50}
Multiply 2 times 25.
x=-\frac{40}{50}
Now solve the equation x=\frac{-145±105}{50} when ± is plus. Add -145 to 105.
x=-\frac{4}{5}
Reduce the fraction \frac{-40}{50} to lowest terms by extracting and canceling out 10.
x=-\frac{250}{50}
Now solve the equation x=\frac{-145±105}{50} when ± is minus. Subtract 105 from -145.
x=-5
Divide -250 by 50.
25x^{2}+145x+100=25\left(x-\left(-\frac{4}{5}\right)\right)\left(x-\left(-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{4}{5} for x_{1} and -5 for x_{2}.
25x^{2}+145x+100=25\left(x+\frac{4}{5}\right)\left(x+5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
25x^{2}+145x+100=25\times \frac{5x+4}{5}\left(x+5\right)
Add \frac{4}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
25x^{2}+145x+100=5\left(5x+4\right)\left(x+5\right)
Cancel out 5, the greatest common factor in 25 and 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}