Evaluate
\frac{53}{20}=2.65
Factor
\frac{53}{2 ^ {2} \cdot 5} = 2\frac{13}{20} = 2.65
Share
Copied to clipboard
\frac{50+1}{2}-\frac{12\times 5+3}{5}-\frac{10\times 4+1}{4}
Multiply 25 and 2 to get 50.
\frac{51}{2}-\frac{12\times 5+3}{5}-\frac{10\times 4+1}{4}
Add 50 and 1 to get 51.
\frac{51}{2}-\frac{60+3}{5}-\frac{10\times 4+1}{4}
Multiply 12 and 5 to get 60.
\frac{51}{2}-\frac{63}{5}-\frac{10\times 4+1}{4}
Add 60 and 3 to get 63.
\frac{255}{10}-\frac{126}{10}-\frac{10\times 4+1}{4}
Least common multiple of 2 and 5 is 10. Convert \frac{51}{2} and \frac{63}{5} to fractions with denominator 10.
\frac{255-126}{10}-\frac{10\times 4+1}{4}
Since \frac{255}{10} and \frac{126}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{129}{10}-\frac{10\times 4+1}{4}
Subtract 126 from 255 to get 129.
\frac{129}{10}-\frac{40+1}{4}
Multiply 10 and 4 to get 40.
\frac{129}{10}-\frac{41}{4}
Add 40 and 1 to get 41.
\frac{258}{20}-\frac{205}{20}
Least common multiple of 10 and 4 is 20. Convert \frac{129}{10} and \frac{41}{4} to fractions with denominator 20.
\frac{258-205}{20}
Since \frac{258}{20} and \frac{205}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{53}{20}
Subtract 205 from 258 to get 53.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}