Solve for y
y=3+3i
y=3-3i
Share
Copied to clipboard
29+y^{2}-4y=9-y^{2}+8y-16
Add 25 and 4 to get 29.
29+y^{2}-4y=-7-y^{2}+8y
Subtract 16 from 9 to get -7.
29+y^{2}-4y-\left(-7\right)=-y^{2}+8y
Subtract -7 from both sides.
29+y^{2}-4y+7=-y^{2}+8y
The opposite of -7 is 7.
29+y^{2}-4y+7+y^{2}=8y
Add y^{2} to both sides.
36+y^{2}-4y+y^{2}=8y
Add 29 and 7 to get 36.
36+2y^{2}-4y=8y
Combine y^{2} and y^{2} to get 2y^{2}.
36+2y^{2}-4y-8y=0
Subtract 8y from both sides.
36+2y^{2}-12y=0
Combine -4y and -8y to get -12y.
2y^{2}-12y+36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 36}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -12 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 36}}{2\times 2}
Square -12.
y=\frac{-\left(-12\right)±\sqrt{144-8\times 36}}{2\times 2}
Multiply -4 times 2.
y=\frac{-\left(-12\right)±\sqrt{144-288}}{2\times 2}
Multiply -8 times 36.
y=\frac{-\left(-12\right)±\sqrt{-144}}{2\times 2}
Add 144 to -288.
y=\frac{-\left(-12\right)±12i}{2\times 2}
Take the square root of -144.
y=\frac{12±12i}{2\times 2}
The opposite of -12 is 12.
y=\frac{12±12i}{4}
Multiply 2 times 2.
y=\frac{12+12i}{4}
Now solve the equation y=\frac{12±12i}{4} when ± is plus. Add 12 to 12i.
y=3+3i
Divide 12+12i by 4.
y=\frac{12-12i}{4}
Now solve the equation y=\frac{12±12i}{4} when ± is minus. Subtract 12i from 12.
y=3-3i
Divide 12-12i by 4.
y=3+3i y=3-3i
The equation is now solved.
29+y^{2}-4y=9-y^{2}+8y-16
Add 25 and 4 to get 29.
29+y^{2}-4y=-7-y^{2}+8y
Subtract 16 from 9 to get -7.
29+y^{2}-4y+y^{2}=-7+8y
Add y^{2} to both sides.
29+2y^{2}-4y=-7+8y
Combine y^{2} and y^{2} to get 2y^{2}.
29+2y^{2}-4y-8y=-7
Subtract 8y from both sides.
29+2y^{2}-12y=-7
Combine -4y and -8y to get -12y.
2y^{2}-12y=-7-29
Subtract 29 from both sides.
2y^{2}-12y=-36
Subtract 29 from -7 to get -36.
\frac{2y^{2}-12y}{2}=-\frac{36}{2}
Divide both sides by 2.
y^{2}+\left(-\frac{12}{2}\right)y=-\frac{36}{2}
Dividing by 2 undoes the multiplication by 2.
y^{2}-6y=-\frac{36}{2}
Divide -12 by 2.
y^{2}-6y=-18
Divide -36 by 2.
y^{2}-6y+\left(-3\right)^{2}=-18+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-6y+9=-18+9
Square -3.
y^{2}-6y+9=-9
Add -18 to 9.
\left(y-3\right)^{2}=-9
Factor y^{2}-6y+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-3\right)^{2}}=\sqrt{-9}
Take the square root of both sides of the equation.
y-3=3i y-3=-3i
Simplify.
y=3+3i y=3-3i
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}