Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}+24x-14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-24±\sqrt{24^{2}-4\times 7\left(-14\right)}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-24±\sqrt{576-4\times 7\left(-14\right)}}{2\times 7}
Square 24.
x=\frac{-24±\sqrt{576-28\left(-14\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-24±\sqrt{576+392}}{2\times 7}
Multiply -28 times -14.
x=\frac{-24±\sqrt{968}}{2\times 7}
Add 576 to 392.
x=\frac{-24±22\sqrt{2}}{2\times 7}
Take the square root of 968.
x=\frac{-24±22\sqrt{2}}{14}
Multiply 2 times 7.
x=\frac{22\sqrt{2}-24}{14}
Now solve the equation x=\frac{-24±22\sqrt{2}}{14} when ± is plus. Add -24 to 22\sqrt{2}.
x=\frac{11\sqrt{2}-12}{7}
Divide -24+22\sqrt{2} by 14.
x=\frac{-22\sqrt{2}-24}{14}
Now solve the equation x=\frac{-24±22\sqrt{2}}{14} when ± is minus. Subtract 22\sqrt{2} from -24.
x=\frac{-11\sqrt{2}-12}{7}
Divide -24-22\sqrt{2} by 14.
7x^{2}+24x-14=7\left(x-\frac{11\sqrt{2}-12}{7}\right)\left(x-\frac{-11\sqrt{2}-12}{7}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-12+11\sqrt{2}}{7} for x_{1} and \frac{-12-11\sqrt{2}}{7} for x_{2}.