Solve for x
x=-\frac{3}{4}=-0.75
x=\frac{24}{31}\approx 0.774193548
Graph
Share
Copied to clipboard
124x^{2}-3x-72=0
Divide both sides by 2.
a+b=-3 ab=124\left(-72\right)=-8928
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 124x^{2}+ax+bx-72. To find a and b, set up a system to be solved.
1,-8928 2,-4464 3,-2976 4,-2232 6,-1488 8,-1116 9,-992 12,-744 16,-558 18,-496 24,-372 31,-288 32,-279 36,-248 48,-186 62,-144 72,-124 93,-96
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -8928.
1-8928=-8927 2-4464=-4462 3-2976=-2973 4-2232=-2228 6-1488=-1482 8-1116=-1108 9-992=-983 12-744=-732 16-558=-542 18-496=-478 24-372=-348 31-288=-257 32-279=-247 36-248=-212 48-186=-138 62-144=-82 72-124=-52 93-96=-3
Calculate the sum for each pair.
a=-96 b=93
The solution is the pair that gives sum -3.
\left(124x^{2}-96x\right)+\left(93x-72\right)
Rewrite 124x^{2}-3x-72 as \left(124x^{2}-96x\right)+\left(93x-72\right).
4x\left(31x-24\right)+3\left(31x-24\right)
Factor out 4x in the first and 3 in the second group.
\left(31x-24\right)\left(4x+3\right)
Factor out common term 31x-24 by using distributive property.
x=\frac{24}{31} x=-\frac{3}{4}
To find equation solutions, solve 31x-24=0 and 4x+3=0.
248x^{2}-6x-144=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 248\left(-144\right)}}{2\times 248}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 248 for a, -6 for b, and -144 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 248\left(-144\right)}}{2\times 248}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-992\left(-144\right)}}{2\times 248}
Multiply -4 times 248.
x=\frac{-\left(-6\right)±\sqrt{36+142848}}{2\times 248}
Multiply -992 times -144.
x=\frac{-\left(-6\right)±\sqrt{142884}}{2\times 248}
Add 36 to 142848.
x=\frac{-\left(-6\right)±378}{2\times 248}
Take the square root of 142884.
x=\frac{6±378}{2\times 248}
The opposite of -6 is 6.
x=\frac{6±378}{496}
Multiply 2 times 248.
x=\frac{384}{496}
Now solve the equation x=\frac{6±378}{496} when ± is plus. Add 6 to 378.
x=\frac{24}{31}
Reduce the fraction \frac{384}{496} to lowest terms by extracting and canceling out 16.
x=-\frac{372}{496}
Now solve the equation x=\frac{6±378}{496} when ± is minus. Subtract 378 from 6.
x=-\frac{3}{4}
Reduce the fraction \frac{-372}{496} to lowest terms by extracting and canceling out 124.
x=\frac{24}{31} x=-\frac{3}{4}
The equation is now solved.
248x^{2}-6x-144=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
248x^{2}-6x-144-\left(-144\right)=-\left(-144\right)
Add 144 to both sides of the equation.
248x^{2}-6x=-\left(-144\right)
Subtracting -144 from itself leaves 0.
248x^{2}-6x=144
Subtract -144 from 0.
\frac{248x^{2}-6x}{248}=\frac{144}{248}
Divide both sides by 248.
x^{2}+\left(-\frac{6}{248}\right)x=\frac{144}{248}
Dividing by 248 undoes the multiplication by 248.
x^{2}-\frac{3}{124}x=\frac{144}{248}
Reduce the fraction \frac{-6}{248} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{124}x=\frac{18}{31}
Reduce the fraction \frac{144}{248} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{3}{124}x+\left(-\frac{3}{248}\right)^{2}=\frac{18}{31}+\left(-\frac{3}{248}\right)^{2}
Divide -\frac{3}{124}, the coefficient of the x term, by 2 to get -\frac{3}{248}. Then add the square of -\frac{3}{248} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{124}x+\frac{9}{61504}=\frac{18}{31}+\frac{9}{61504}
Square -\frac{3}{248} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{124}x+\frac{9}{61504}=\frac{35721}{61504}
Add \frac{18}{31} to \frac{9}{61504} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{248}\right)^{2}=\frac{35721}{61504}
Factor x^{2}-\frac{3}{124}x+\frac{9}{61504}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{248}\right)^{2}}=\sqrt{\frac{35721}{61504}}
Take the square root of both sides of the equation.
x-\frac{3}{248}=\frac{189}{248} x-\frac{3}{248}=-\frac{189}{248}
Simplify.
x=\frac{24}{31} x=-\frac{3}{4}
Add \frac{3}{248} to both sides of the equation.
x ^ 2 -\frac{3}{124}x -\frac{18}{31} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 248
r + s = \frac{3}{124} rs = -\frac{18}{31}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{3}{248} - u s = \frac{3}{248} + u
Two numbers r and s sum up to \frac{3}{124} exactly when the average of the two numbers is \frac{1}{2}*\frac{3}{124} = \frac{3}{248}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{3}{248} - u) (\frac{3}{248} + u) = -\frac{18}{31}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{18}{31}
\frac{9}{61504} - u^2 = -\frac{18}{31}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{18}{31}-\frac{9}{61504} = \frac{35721}{61504}
Simplify the expression by subtracting \frac{9}{61504} on both sides
u^2 = -\frac{35721}{61504} u = \pm\sqrt{-\frac{35721}{61504}} = \pm \frac{189}{248}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{3}{248} - \frac{189}{248}i = -0.750 s = \frac{3}{248} + \frac{189}{248}i = 0.774
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}