Evaluate
\frac{246}{25}=9.84
Factor
\frac{2 \cdot 3 \cdot 41}{5 ^ {2}} = 9\frac{21}{25} = 9.84
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)246}\\\end{array}
Use the 1^{st} digit 2 from dividend 246
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)246}\\\end{array}
Since 2 is less than 25, use the next digit 4 from dividend 246 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)246}\\\end{array}
Use the 2^{nd} digit 4 from dividend 246
\begin{array}{l}\phantom{25)}00\phantom{4}\\25\overline{)246}\\\end{array}
Since 24 is less than 25, use the next digit 6 from dividend 246 and add 0 to the quotient
\begin{array}{l}\phantom{25)}00\phantom{5}\\25\overline{)246}\\\end{array}
Use the 3^{rd} digit 6 from dividend 246
\begin{array}{l}\phantom{25)}009\phantom{6}\\25\overline{)246}\\\phantom{25)}\underline{\phantom{}225\phantom{}}\\\phantom{25)9}21\\\end{array}
Find closest multiple of 25 to 246. We see that 9 \times 25 = 225 is the nearest. Now subtract 225 from 246 to get reminder 21. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }21
Since 21 is less than 25, stop the division. The reminder is 21. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}