Evaluate
\frac{123}{8}=15.375
Factor
\frac{3 \cdot 41}{2 ^ {3}} = 15\frac{3}{8} = 15.375
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)246}\\\end{array}
Use the 1^{st} digit 2 from dividend 246
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)246}\\\end{array}
Since 2 is less than 16, use the next digit 4 from dividend 246 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)246}\\\end{array}
Use the 2^{nd} digit 4 from dividend 246
\begin{array}{l}\phantom{16)}01\phantom{4}\\16\overline{)246}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}8\\\end{array}
Find closest multiple of 16 to 24. We see that 1 \times 16 = 16 is the nearest. Now subtract 16 from 24 to get reminder 8. Add 1 to quotient.
\begin{array}{l}\phantom{16)}01\phantom{5}\\16\overline{)246}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}86\\\end{array}
Use the 3^{rd} digit 6 from dividend 246
\begin{array}{l}\phantom{16)}015\phantom{6}\\16\overline{)246}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}86\\\phantom{16)}\underline{\phantom{9}80\phantom{}}\\\phantom{16)99}6\\\end{array}
Find closest multiple of 16 to 86. We see that 5 \times 16 = 80 is the nearest. Now subtract 80 from 86 to get reminder 6. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }6
Since 6 is less than 16, stop the division. The reminder is 6. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}