Evaluate
\frac{49}{12}\approx 4.083333333
Factor
\frac{7 ^ {2}}{2 ^ {2} \cdot 3} = 4\frac{1}{12} = 4.083333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)245}\\\end{array}
Use the 1^{st} digit 2 from dividend 245
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)245}\\\end{array}
Since 2 is less than 60, use the next digit 4 from dividend 245 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)245}\\\end{array}
Use the 2^{nd} digit 4 from dividend 245
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)245}\\\end{array}
Since 24 is less than 60, use the next digit 5 from dividend 245 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)245}\\\end{array}
Use the 3^{rd} digit 5 from dividend 245
\begin{array}{l}\phantom{60)}004\phantom{6}\\60\overline{)245}\\\phantom{60)}\underline{\phantom{}240\phantom{}}\\\phantom{60)99}5\\\end{array}
Find closest multiple of 60 to 245. We see that 4 \times 60 = 240 is the nearest. Now subtract 240 from 245 to get reminder 5. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }5
Since 5 is less than 60, stop the division. The reminder is 5. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}