Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2448x^{2}+1376x+298=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1376±\sqrt{1376^{2}-4\times 2448\times 298}}{2\times 2448}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2448 for a, 1376 for b, and 298 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1376±\sqrt{1893376-4\times 2448\times 298}}{2\times 2448}
Square 1376.
x=\frac{-1376±\sqrt{1893376-9792\times 298}}{2\times 2448}
Multiply -4 times 2448.
x=\frac{-1376±\sqrt{1893376-2918016}}{2\times 2448}
Multiply -9792 times 298.
x=\frac{-1376±\sqrt{-1024640}}{2\times 2448}
Add 1893376 to -2918016.
x=\frac{-1376±8\sqrt{16010}i}{2\times 2448}
Take the square root of -1024640.
x=\frac{-1376±8\sqrt{16010}i}{4896}
Multiply 2 times 2448.
x=\frac{-1376+8\sqrt{16010}i}{4896}
Now solve the equation x=\frac{-1376±8\sqrt{16010}i}{4896} when ± is plus. Add -1376 to 8i\sqrt{16010}.
x=\frac{\sqrt{16010}i}{612}-\frac{43}{153}
Divide -1376+8i\sqrt{16010} by 4896.
x=\frac{-8\sqrt{16010}i-1376}{4896}
Now solve the equation x=\frac{-1376±8\sqrt{16010}i}{4896} when ± is minus. Subtract 8i\sqrt{16010} from -1376.
x=-\frac{\sqrt{16010}i}{612}-\frac{43}{153}
Divide -1376-8i\sqrt{16010} by 4896.
x=\frac{\sqrt{16010}i}{612}-\frac{43}{153} x=-\frac{\sqrt{16010}i}{612}-\frac{43}{153}
The equation is now solved.
2448x^{2}+1376x+298=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2448x^{2}+1376x+298-298=-298
Subtract 298 from both sides of the equation.
2448x^{2}+1376x=-298
Subtracting 298 from itself leaves 0.
\frac{2448x^{2}+1376x}{2448}=-\frac{298}{2448}
Divide both sides by 2448.
x^{2}+\frac{1376}{2448}x=-\frac{298}{2448}
Dividing by 2448 undoes the multiplication by 2448.
x^{2}+\frac{86}{153}x=-\frac{298}{2448}
Reduce the fraction \frac{1376}{2448} to lowest terms by extracting and canceling out 16.
x^{2}+\frac{86}{153}x=-\frac{149}{1224}
Reduce the fraction \frac{-298}{2448} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{86}{153}x+\left(\frac{43}{153}\right)^{2}=-\frac{149}{1224}+\left(\frac{43}{153}\right)^{2}
Divide \frac{86}{153}, the coefficient of the x term, by 2 to get \frac{43}{153}. Then add the square of \frac{43}{153} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{86}{153}x+\frac{1849}{23409}=-\frac{149}{1224}+\frac{1849}{23409}
Square \frac{43}{153} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{86}{153}x+\frac{1849}{23409}=-\frac{8005}{187272}
Add -\frac{149}{1224} to \frac{1849}{23409} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{43}{153}\right)^{2}=-\frac{8005}{187272}
Factor x^{2}+\frac{86}{153}x+\frac{1849}{23409}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{43}{153}\right)^{2}}=\sqrt{-\frac{8005}{187272}}
Take the square root of both sides of the equation.
x+\frac{43}{153}=\frac{\sqrt{16010}i}{612} x+\frac{43}{153}=-\frac{\sqrt{16010}i}{612}
Simplify.
x=\frac{\sqrt{16010}i}{612}-\frac{43}{153} x=-\frac{\sqrt{16010}i}{612}-\frac{43}{153}
Subtract \frac{43}{153} from both sides of the equation.