Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{c}\phantom{\times}244140625\\\underline{\times\phantom{9999}34816}\\\end{array}
First line up the numbers vertically and match the places from the right like this.
\begin{array}{c}\phantom{\times}244140625\\\underline{\times\phantom{9999}34816}\\\phantom{\times}1464843750\\\end{array}
Now multiply the first number with the 1^{st} digit in 2^{nd} number to get intermediate results. That is Multiply 244140625 with 6. Write the result 1464843750 at the end leaving 0 spaces to the right like this.
\begin{array}{c}\phantom{\times}244140625\\\underline{\times\phantom{9999}34816}\\\phantom{\times}1464843750\\\phantom{\times}244140625\phantom{9}\\\end{array}
Now multiply the first number with the 2^{nd} digit in 2^{nd} number to get intermediate results. That is Multiply 244140625 with 1. Write the result 244140625 at the end leaving 1 spaces to the right like this.
\begin{array}{c}\phantom{\times}244140625\\\underline{\times\phantom{9999}34816}\\\phantom{\times}1464843750\\\phantom{\times}244140625\phantom{9}\\\phantom{\times}1953125000\phantom{99}\\\end{array}
Now multiply the first number with the 3^{rd} digit in 2^{nd} number to get intermediate results. That is Multiply 244140625 with 8. Write the result 1953125000 at the end leaving 2 spaces to the right like this.
\begin{array}{c}\phantom{\times}244140625\\\underline{\times\phantom{9999}34816}\\\phantom{\times}1464843750\\\phantom{\times}244140625\phantom{9}\\\phantom{\times}1953125000\phantom{99}\\\phantom{\times}976562500\phantom{999}\\\end{array}
Now multiply the first number with the 4^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 244140625 with 4. Write the result 976562500 at the end leaving 3 spaces to the right like this.
\begin{array}{c}\phantom{\times}244140625\\\underline{\times\phantom{9999}34816}\\\phantom{\times}1464843750\\\phantom{\times}244140625\phantom{9}\\\phantom{\times}1953125000\phantom{99}\\\phantom{\times}976562500\phantom{999}\\\underline{\phantom{\times}732421875\phantom{9999}}\\\end{array}
Now multiply the first number with the 5^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 244140625 with 3. Write the result 732421875 at the end leaving 4 spaces to the right like this.
\begin{array}{c}\phantom{\times}244140625\\\underline{\times\phantom{9999}34816}\\\phantom{\times}1464843750\\\phantom{\times}244140625\phantom{9}\\\phantom{\times}1953125000\phantom{99}\\\phantom{\times}976562500\phantom{999}\\\underline{\phantom{\times}732421875\phantom{9999}}\\\phantom{\times}259721216\end{array}
Now add the intermediate results to get final answer.