Evaluate
\frac{1925}{19}\approx 101.315789474
Factor
\frac{5 ^ {2} \cdot 7 \cdot 11}{19} = 101\frac{6}{19} = 101.3157894736842
Share
Copied to clipboard
\begin{array}{l}\phantom{2375)}\phantom{1}\\2375\overline{)240625}\\\end{array}
Use the 1^{st} digit 2 from dividend 240625
\begin{array}{l}\phantom{2375)}0\phantom{2}\\2375\overline{)240625}\\\end{array}
Since 2 is less than 2375, use the next digit 4 from dividend 240625 and add 0 to the quotient
\begin{array}{l}\phantom{2375)}0\phantom{3}\\2375\overline{)240625}\\\end{array}
Use the 2^{nd} digit 4 from dividend 240625
\begin{array}{l}\phantom{2375)}00\phantom{4}\\2375\overline{)240625}\\\end{array}
Since 24 is less than 2375, use the next digit 0 from dividend 240625 and add 0 to the quotient
\begin{array}{l}\phantom{2375)}00\phantom{5}\\2375\overline{)240625}\\\end{array}
Use the 3^{rd} digit 0 from dividend 240625
\begin{array}{l}\phantom{2375)}000\phantom{6}\\2375\overline{)240625}\\\end{array}
Since 240 is less than 2375, use the next digit 6 from dividend 240625 and add 0 to the quotient
\begin{array}{l}\phantom{2375)}000\phantom{7}\\2375\overline{)240625}\\\end{array}
Use the 4^{th} digit 6 from dividend 240625
\begin{array}{l}\phantom{2375)}0001\phantom{8}\\2375\overline{)240625}\\\phantom{2375)}\underline{\phantom{}2375\phantom{99}}\\\phantom{2375)99}31\\\end{array}
Find closest multiple of 2375 to 2406. We see that 1 \times 2375 = 2375 is the nearest. Now subtract 2375 from 2406 to get reminder 31. Add 1 to quotient.
\begin{array}{l}\phantom{2375)}0001\phantom{9}\\2375\overline{)240625}\\\phantom{2375)}\underline{\phantom{}2375\phantom{99}}\\\phantom{2375)99}312\\\end{array}
Use the 5^{th} digit 2 from dividend 240625
\begin{array}{l}\phantom{2375)}00010\phantom{10}\\2375\overline{)240625}\\\phantom{2375)}\underline{\phantom{}2375\phantom{99}}\\\phantom{2375)99}312\\\end{array}
Since 312 is less than 2375, use the next digit 5 from dividend 240625 and add 0 to the quotient
\begin{array}{l}\phantom{2375)}00010\phantom{11}\\2375\overline{)240625}\\\phantom{2375)}\underline{\phantom{}2375\phantom{99}}\\\phantom{2375)99}3125\\\end{array}
Use the 6^{th} digit 5 from dividend 240625
\begin{array}{l}\phantom{2375)}000101\phantom{12}\\2375\overline{)240625}\\\phantom{2375)}\underline{\phantom{}2375\phantom{99}}\\\phantom{2375)99}3125\\\phantom{2375)}\underline{\phantom{99}2375\phantom{}}\\\phantom{2375)999}750\\\end{array}
Find closest multiple of 2375 to 3125. We see that 1 \times 2375 = 2375 is the nearest. Now subtract 2375 from 3125 to get reminder 750. Add 1 to quotient.
\text{Quotient: }101 \text{Reminder: }750
Since 750 is less than 2375, stop the division. The reminder is 750. The topmost line 000101 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 101.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}