Evaluate
\frac{48}{7}\approx 6.857142857
Factor
\frac{2 ^ {4} \cdot 3}{7} = 6\frac{6}{7} = 6.857142857142857
Share
Copied to clipboard
\begin{array}{l}\phantom{350)}\phantom{1}\\350\overline{)2400}\\\end{array}
Use the 1^{st} digit 2 from dividend 2400
\begin{array}{l}\phantom{350)}0\phantom{2}\\350\overline{)2400}\\\end{array}
Since 2 is less than 350, use the next digit 4 from dividend 2400 and add 0 to the quotient
\begin{array}{l}\phantom{350)}0\phantom{3}\\350\overline{)2400}\\\end{array}
Use the 2^{nd} digit 4 from dividend 2400
\begin{array}{l}\phantom{350)}00\phantom{4}\\350\overline{)2400}\\\end{array}
Since 24 is less than 350, use the next digit 0 from dividend 2400 and add 0 to the quotient
\begin{array}{l}\phantom{350)}00\phantom{5}\\350\overline{)2400}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2400
\begin{array}{l}\phantom{350)}000\phantom{6}\\350\overline{)2400}\\\end{array}
Since 240 is less than 350, use the next digit 0 from dividend 2400 and add 0 to the quotient
\begin{array}{l}\phantom{350)}000\phantom{7}\\350\overline{)2400}\\\end{array}
Use the 4^{th} digit 0 from dividend 2400
\begin{array}{l}\phantom{350)}0006\phantom{8}\\350\overline{)2400}\\\phantom{350)}\underline{\phantom{}2100\phantom{}}\\\phantom{350)9}300\\\end{array}
Find closest multiple of 350 to 2400. We see that 6 \times 350 = 2100 is the nearest. Now subtract 2100 from 2400 to get reminder 300. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }300
Since 300 is less than 350, stop the division. The reminder is 300. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}