Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\begin{array}{l}\phantom{1600)}\phantom{1}\\1600\overline{)2400}\\\end{array}
Use the 1^{st} digit 2 from dividend 2400
\begin{array}{l}\phantom{1600)}0\phantom{2}\\1600\overline{)2400}\\\end{array}
Since 2 is less than 1600, use the next digit 4 from dividend 2400 and add 0 to the quotient
\begin{array}{l}\phantom{1600)}0\phantom{3}\\1600\overline{)2400}\\\end{array}
Use the 2^{nd} digit 4 from dividend 2400
\begin{array}{l}\phantom{1600)}00\phantom{4}\\1600\overline{)2400}\\\end{array}
Since 24 is less than 1600, use the next digit 0 from dividend 2400 and add 0 to the quotient
\begin{array}{l}\phantom{1600)}00\phantom{5}\\1600\overline{)2400}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2400
\begin{array}{l}\phantom{1600)}000\phantom{6}\\1600\overline{)2400}\\\end{array}
Since 240 is less than 1600, use the next digit 0 from dividend 2400 and add 0 to the quotient
\begin{array}{l}\phantom{1600)}000\phantom{7}\\1600\overline{)2400}\\\end{array}
Use the 4^{th} digit 0 from dividend 2400
\begin{array}{l}\phantom{1600)}0001\phantom{8}\\1600\overline{)2400}\\\phantom{1600)}\underline{\phantom{}1600\phantom{}}\\\phantom{1600)9}800\\\end{array}
Find closest multiple of 1600 to 2400. We see that 1 \times 1600 = 1600 is the nearest. Now subtract 1600 from 2400 to get reminder 800. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }800
Since 800 is less than 1600, stop the division. The reminder is 800. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}