Evaluate
\frac{80110}{41}\approx 1953.902439024
Factor
\frac{2 \cdot 5 \cdot 8011}{41} = 1953\frac{37}{41} = 1953.9024390243903
Share
Copied to clipboard
\begin{array}{l}\phantom{123)}\phantom{1}\\123\overline{)240330}\\\end{array}
Use the 1^{st} digit 2 from dividend 240330
\begin{array}{l}\phantom{123)}0\phantom{2}\\123\overline{)240330}\\\end{array}
Since 2 is less than 123, use the next digit 4 from dividend 240330 and add 0 to the quotient
\begin{array}{l}\phantom{123)}0\phantom{3}\\123\overline{)240330}\\\end{array}
Use the 2^{nd} digit 4 from dividend 240330
\begin{array}{l}\phantom{123)}00\phantom{4}\\123\overline{)240330}\\\end{array}
Since 24 is less than 123, use the next digit 0 from dividend 240330 and add 0 to the quotient
\begin{array}{l}\phantom{123)}00\phantom{5}\\123\overline{)240330}\\\end{array}
Use the 3^{rd} digit 0 from dividend 240330
\begin{array}{l}\phantom{123)}001\phantom{6}\\123\overline{)240330}\\\phantom{123)}\underline{\phantom{}123\phantom{999}}\\\phantom{123)}117\\\end{array}
Find closest multiple of 123 to 240. We see that 1 \times 123 = 123 is the nearest. Now subtract 123 from 240 to get reminder 117. Add 1 to quotient.
\begin{array}{l}\phantom{123)}001\phantom{7}\\123\overline{)240330}\\\phantom{123)}\underline{\phantom{}123\phantom{999}}\\\phantom{123)}1173\\\end{array}
Use the 4^{th} digit 3 from dividend 240330
\begin{array}{l}\phantom{123)}0019\phantom{8}\\123\overline{)240330}\\\phantom{123)}\underline{\phantom{}123\phantom{999}}\\\phantom{123)}1173\\\phantom{123)}\underline{\phantom{}1107\phantom{99}}\\\phantom{123)99}66\\\end{array}
Find closest multiple of 123 to 1173. We see that 9 \times 123 = 1107 is the nearest. Now subtract 1107 from 1173 to get reminder 66. Add 9 to quotient.
\begin{array}{l}\phantom{123)}0019\phantom{9}\\123\overline{)240330}\\\phantom{123)}\underline{\phantom{}123\phantom{999}}\\\phantom{123)}1173\\\phantom{123)}\underline{\phantom{}1107\phantom{99}}\\\phantom{123)99}663\\\end{array}
Use the 5^{th} digit 3 from dividend 240330
\begin{array}{l}\phantom{123)}00195\phantom{10}\\123\overline{)240330}\\\phantom{123)}\underline{\phantom{}123\phantom{999}}\\\phantom{123)}1173\\\phantom{123)}\underline{\phantom{}1107\phantom{99}}\\\phantom{123)99}663\\\phantom{123)}\underline{\phantom{99}615\phantom{9}}\\\phantom{123)999}48\\\end{array}
Find closest multiple of 123 to 663. We see that 5 \times 123 = 615 is the nearest. Now subtract 615 from 663 to get reminder 48. Add 5 to quotient.
\begin{array}{l}\phantom{123)}00195\phantom{11}\\123\overline{)240330}\\\phantom{123)}\underline{\phantom{}123\phantom{999}}\\\phantom{123)}1173\\\phantom{123)}\underline{\phantom{}1107\phantom{99}}\\\phantom{123)99}663\\\phantom{123)}\underline{\phantom{99}615\phantom{9}}\\\phantom{123)999}480\\\end{array}
Use the 6^{th} digit 0 from dividend 240330
\begin{array}{l}\phantom{123)}001953\phantom{12}\\123\overline{)240330}\\\phantom{123)}\underline{\phantom{}123\phantom{999}}\\\phantom{123)}1173\\\phantom{123)}\underline{\phantom{}1107\phantom{99}}\\\phantom{123)99}663\\\phantom{123)}\underline{\phantom{99}615\phantom{9}}\\\phantom{123)999}480\\\phantom{123)}\underline{\phantom{999}369\phantom{}}\\\phantom{123)999}111\\\end{array}
Find closest multiple of 123 to 480. We see that 3 \times 123 = 369 is the nearest. Now subtract 369 from 480 to get reminder 111. Add 3 to quotient.
\text{Quotient: }1953 \text{Reminder: }111
Since 111 is less than 123, stop the division. The reminder is 111. The topmost line 001953 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1953.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}