Solve for h
h=\frac{13}{126}\approx 0.103174603
Quiz
Linear Equation
5 problems similar to:
240 h - [ 24 - ( 6 h + 8 ) - ( 5 - 2 h ) ] = 3 - ( 8 h - 12 )
Share
Copied to clipboard
240h-\left(24-6h-8-\left(5-2h\right)\right)=3-\left(8h-12\right)
To find the opposite of 6h+8, find the opposite of each term.
240h-\left(16-6h-\left(5-2h\right)\right)=3-\left(8h-12\right)
Subtract 8 from 24 to get 16.
240h-\left(16-6h-5-\left(-2h\right)\right)=3-\left(8h-12\right)
To find the opposite of 5-2h, find the opposite of each term.
240h-\left(16-6h-5+2h\right)=3-\left(8h-12\right)
The opposite of -2h is 2h.
240h-\left(11-6h+2h\right)=3-\left(8h-12\right)
Subtract 5 from 16 to get 11.
240h-\left(11-4h\right)=3-\left(8h-12\right)
Combine -6h and 2h to get -4h.
240h-11-\left(-4h\right)=3-\left(8h-12\right)
To find the opposite of 11-4h, find the opposite of each term.
240h-11+4h=3-\left(8h-12\right)
The opposite of -4h is 4h.
244h-11=3-\left(8h-12\right)
Combine 240h and 4h to get 244h.
244h-11=3-8h-\left(-12\right)
To find the opposite of 8h-12, find the opposite of each term.
244h-11=3-8h+12
The opposite of -12 is 12.
244h-11=15-8h
Add 3 and 12 to get 15.
244h-11+8h=15
Add 8h to both sides.
252h-11=15
Combine 244h and 8h to get 252h.
252h=15+11
Add 11 to both sides.
252h=26
Add 15 and 11 to get 26.
h=\frac{26}{252}
Divide both sides by 252.
h=\frac{13}{126}
Reduce the fraction \frac{26}{252} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}