Solve for x
x = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
\left(240+360x\right)\left(1+x\right)=800
Use the distributive property to multiply 240 by 1+1.5x.
240+600x+360x^{2}=800
Use the distributive property to multiply 240+360x by 1+x and combine like terms.
240+600x+360x^{2}-800=0
Subtract 800 from both sides.
-560+600x+360x^{2}=0
Subtract 800 from 240 to get -560.
360x^{2}+600x-560=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-600±\sqrt{600^{2}-4\times 360\left(-560\right)}}{2\times 360}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 360 for a, 600 for b, and -560 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-600±\sqrt{360000-4\times 360\left(-560\right)}}{2\times 360}
Square 600.
x=\frac{-600±\sqrt{360000-1440\left(-560\right)}}{2\times 360}
Multiply -4 times 360.
x=\frac{-600±\sqrt{360000+806400}}{2\times 360}
Multiply -1440 times -560.
x=\frac{-600±\sqrt{1166400}}{2\times 360}
Add 360000 to 806400.
x=\frac{-600±1080}{2\times 360}
Take the square root of 1166400.
x=\frac{-600±1080}{720}
Multiply 2 times 360.
x=\frac{480}{720}
Now solve the equation x=\frac{-600±1080}{720} when ± is plus. Add -600 to 1080.
x=\frac{2}{3}
Reduce the fraction \frac{480}{720} to lowest terms by extracting and canceling out 240.
x=-\frac{1680}{720}
Now solve the equation x=\frac{-600±1080}{720} when ± is minus. Subtract 1080 from -600.
x=-\frac{7}{3}
Reduce the fraction \frac{-1680}{720} to lowest terms by extracting and canceling out 240.
x=\frac{2}{3} x=-\frac{7}{3}
The equation is now solved.
\left(240+360x\right)\left(1+x\right)=800
Use the distributive property to multiply 240 by 1+1.5x.
240+600x+360x^{2}=800
Use the distributive property to multiply 240+360x by 1+x and combine like terms.
600x+360x^{2}=800-240
Subtract 240 from both sides.
600x+360x^{2}=560
Subtract 240 from 800 to get 560.
360x^{2}+600x=560
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{360x^{2}+600x}{360}=\frac{560}{360}
Divide both sides by 360.
x^{2}+\frac{600}{360}x=\frac{560}{360}
Dividing by 360 undoes the multiplication by 360.
x^{2}+\frac{5}{3}x=\frac{560}{360}
Reduce the fraction \frac{600}{360} to lowest terms by extracting and canceling out 120.
x^{2}+\frac{5}{3}x=\frac{14}{9}
Reduce the fraction \frac{560}{360} to lowest terms by extracting and canceling out 40.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=\frac{14}{9}+\left(\frac{5}{6}\right)^{2}
Divide \frac{5}{3}, the coefficient of the x term, by 2 to get \frac{5}{6}. Then add the square of \frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{14}{9}+\frac{25}{36}
Square \frac{5}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{9}{4}
Add \frac{14}{9} to \frac{25}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{6}\right)^{2}=\frac{9}{4}
Factor x^{2}+\frac{5}{3}x+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{6}=\frac{3}{2} x+\frac{5}{6}=-\frac{3}{2}
Simplify.
x=\frac{2}{3} x=-\frac{7}{3}
Subtract \frac{5}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}