Solve for k
k=160.15
Share
Copied to clipboard
240=95-k-\left(-273.15\right)+32
To find the opposite of k-273.15, find the opposite of each term.
240=95-k+273.15+32
The opposite of -273.15 is 273.15.
240=368.15-k+32
Add 95 and 273.15 to get 368.15.
240=400.15-k
Add 368.15 and 32 to get 400.15.
400.15-k=240
Swap sides so that all variable terms are on the left hand side.
-k=240-400.15
Subtract 400.15 from both sides.
-k=-160.15
Subtract 400.15 from 240 to get -160.15.
k=160.15
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}