Evaluate
27.745
Factor
\frac{31 \cdot 179}{2 ^ {3} \cdot 5 ^ {2}} = 27\frac{149}{200} = 27.745
Share
Copied to clipboard
\frac{24.57\times 2}{3\times 2+1}+3.35-\frac{5}{8}-\frac{-225}{\frac{12\times 2+1}{2}}
Divide 24.57 by \frac{3\times 2+1}{2} by multiplying 24.57 by the reciprocal of \frac{3\times 2+1}{2}.
\frac{49.14}{3\times 2+1}+3.35-\frac{5}{8}-\frac{-225}{\frac{12\times 2+1}{2}}
Multiply 24.57 and 2 to get 49.14.
\frac{49.14}{6+1}+3.35-\frac{5}{8}-\frac{-225}{\frac{12\times 2+1}{2}}
Multiply 3 and 2 to get 6.
\frac{49.14}{7}+3.35-\frac{5}{8}-\frac{-225}{\frac{12\times 2+1}{2}}
Add 6 and 1 to get 7.
\frac{4914}{700}+3.35-\frac{5}{8}-\frac{-225}{\frac{12\times 2+1}{2}}
Expand \frac{49.14}{7} by multiplying both numerator and the denominator by 100.
\frac{351}{50}+3.35-\frac{5}{8}-\frac{-225}{\frac{12\times 2+1}{2}}
Reduce the fraction \frac{4914}{700} to lowest terms by extracting and canceling out 14.
\frac{351}{50}+\frac{67}{20}-\frac{5}{8}-\frac{-225}{\frac{12\times 2+1}{2}}
Convert decimal number 3.35 to fraction \frac{335}{100}. Reduce the fraction \frac{335}{100} to lowest terms by extracting and canceling out 5.
\frac{702}{100}+\frac{335}{100}-\frac{5}{8}-\frac{-225}{\frac{12\times 2+1}{2}}
Least common multiple of 50 and 20 is 100. Convert \frac{351}{50} and \frac{67}{20} to fractions with denominator 100.
\frac{702+335}{100}-\frac{5}{8}-\frac{-225}{\frac{12\times 2+1}{2}}
Since \frac{702}{100} and \frac{335}{100} have the same denominator, add them by adding their numerators.
\frac{1037}{100}-\frac{5}{8}-\frac{-225}{\frac{12\times 2+1}{2}}
Add 702 and 335 to get 1037.
\frac{2074}{200}-\frac{125}{200}-\frac{-225}{\frac{12\times 2+1}{2}}
Least common multiple of 100 and 8 is 200. Convert \frac{1037}{100} and \frac{5}{8} to fractions with denominator 200.
\frac{2074-125}{200}-\frac{-225}{\frac{12\times 2+1}{2}}
Since \frac{2074}{200} and \frac{125}{200} have the same denominator, subtract them by subtracting their numerators.
\frac{1949}{200}-\frac{-225}{\frac{12\times 2+1}{2}}
Subtract 125 from 2074 to get 1949.
\frac{1949}{200}-\frac{-225\times 2}{12\times 2+1}
Divide -225 by \frac{12\times 2+1}{2} by multiplying -225 by the reciprocal of \frac{12\times 2+1}{2}.
\frac{1949}{200}-\frac{-450}{12\times 2+1}
Multiply -225 and 2 to get -450.
\frac{1949}{200}-\frac{-450}{24+1}
Multiply 12 and 2 to get 24.
\frac{1949}{200}-\frac{-450}{25}
Add 24 and 1 to get 25.
\frac{1949}{200}-\left(-18\right)
Divide -450 by 25 to get -18.
\frac{1949}{200}+18
The opposite of -18 is 18.
\frac{1949}{200}+\frac{3600}{200}
Convert 18 to fraction \frac{3600}{200}.
\frac{1949+3600}{200}
Since \frac{1949}{200} and \frac{3600}{200} have the same denominator, add them by adding their numerators.
\frac{5549}{200}
Add 1949 and 3600 to get 5549.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}