Solve for x
x=-6
x=8
Graph
Share
Copied to clipboard
24=\frac{1}{2}xx+\frac{1}{2}x\left(-2\right)
Use the distributive property to multiply \frac{1}{2}x by x-2.
24=\frac{1}{2}x^{2}+\frac{1}{2}x\left(-2\right)
Multiply x and x to get x^{2}.
24=\frac{1}{2}x^{2}+\frac{-2}{2}x
Multiply \frac{1}{2} and -2 to get \frac{-2}{2}.
24=\frac{1}{2}x^{2}-x
Divide -2 by 2 to get -1.
\frac{1}{2}x^{2}-x=24
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}x^{2}-x-24=0
Subtract 24 from both sides.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{1}{2}\left(-24\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -1 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-2\left(-24\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times \frac{1}{2}}
Multiply -2 times -24.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times \frac{1}{2}}
Add 1 to 48.
x=\frac{-\left(-1\right)±7}{2\times \frac{1}{2}}
Take the square root of 49.
x=\frac{1±7}{2\times \frac{1}{2}}
The opposite of -1 is 1.
x=\frac{1±7}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{8}{1}
Now solve the equation x=\frac{1±7}{1} when ± is plus. Add 1 to 7.
x=8
Divide 8 by 1.
x=-\frac{6}{1}
Now solve the equation x=\frac{1±7}{1} when ± is minus. Subtract 7 from 1.
x=-6
Divide -6 by 1.
x=8 x=-6
The equation is now solved.
24=\frac{1}{2}xx+\frac{1}{2}x\left(-2\right)
Use the distributive property to multiply \frac{1}{2}x by x-2.
24=\frac{1}{2}x^{2}+\frac{1}{2}x\left(-2\right)
Multiply x and x to get x^{2}.
24=\frac{1}{2}x^{2}+\frac{-2}{2}x
Multiply \frac{1}{2} and -2 to get \frac{-2}{2}.
24=\frac{1}{2}x^{2}-x
Divide -2 by 2 to get -1.
\frac{1}{2}x^{2}-x=24
Swap sides so that all variable terms are on the left hand side.
\frac{\frac{1}{2}x^{2}-x}{\frac{1}{2}}=\frac{24}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{1}{\frac{1}{2}}\right)x=\frac{24}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-2x=\frac{24}{\frac{1}{2}}
Divide -1 by \frac{1}{2} by multiplying -1 by the reciprocal of \frac{1}{2}.
x^{2}-2x=48
Divide 24 by \frac{1}{2} by multiplying 24 by the reciprocal of \frac{1}{2}.
x^{2}-2x+1=48+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=49
Add 48 to 1.
\left(x-1\right)^{2}=49
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{49}
Take the square root of both sides of the equation.
x-1=7 x-1=-7
Simplify.
x=8 x=-6
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}