Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(12x^{2}-13x-4\right)
Factor out 2.
a+b=-13 ab=12\left(-4\right)=-48
Consider 12x^{2}-13x-4. Factor the expression by grouping. First, the expression needs to be rewritten as 12x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,-48 2,-24 3,-16 4,-12 6,-8
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -48.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Calculate the sum for each pair.
a=-16 b=3
The solution is the pair that gives sum -13.
\left(12x^{2}-16x\right)+\left(3x-4\right)
Rewrite 12x^{2}-13x-4 as \left(12x^{2}-16x\right)+\left(3x-4\right).
4x\left(3x-4\right)+3x-4
Factor out 4x in 12x^{2}-16x.
\left(3x-4\right)\left(4x+1\right)
Factor out common term 3x-4 by using distributive property.
2\left(3x-4\right)\left(4x+1\right)
Rewrite the complete factored expression.
24x^{2}-26x-8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 24\left(-8\right)}}{2\times 24}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-26\right)±\sqrt{676-4\times 24\left(-8\right)}}{2\times 24}
Square -26.
x=\frac{-\left(-26\right)±\sqrt{676-96\left(-8\right)}}{2\times 24}
Multiply -4 times 24.
x=\frac{-\left(-26\right)±\sqrt{676+768}}{2\times 24}
Multiply -96 times -8.
x=\frac{-\left(-26\right)±\sqrt{1444}}{2\times 24}
Add 676 to 768.
x=\frac{-\left(-26\right)±38}{2\times 24}
Take the square root of 1444.
x=\frac{26±38}{2\times 24}
The opposite of -26 is 26.
x=\frac{26±38}{48}
Multiply 2 times 24.
x=\frac{64}{48}
Now solve the equation x=\frac{26±38}{48} when ± is plus. Add 26 to 38.
x=\frac{4}{3}
Reduce the fraction \frac{64}{48} to lowest terms by extracting and canceling out 16.
x=-\frac{12}{48}
Now solve the equation x=\frac{26±38}{48} when ± is minus. Subtract 38 from 26.
x=-\frac{1}{4}
Reduce the fraction \frac{-12}{48} to lowest terms by extracting and canceling out 12.
24x^{2}-26x-8=24\left(x-\frac{4}{3}\right)\left(x-\left(-\frac{1}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{4}{3} for x_{1} and -\frac{1}{4} for x_{2}.
24x^{2}-26x-8=24\left(x-\frac{4}{3}\right)\left(x+\frac{1}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
24x^{2}-26x-8=24\times \frac{3x-4}{3}\left(x+\frac{1}{4}\right)
Subtract \frac{4}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
24x^{2}-26x-8=24\times \frac{3x-4}{3}\times \frac{4x+1}{4}
Add \frac{1}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
24x^{2}-26x-8=24\times \frac{\left(3x-4\right)\left(4x+1\right)}{3\times 4}
Multiply \frac{3x-4}{3} times \frac{4x+1}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
24x^{2}-26x-8=24\times \frac{\left(3x-4\right)\left(4x+1\right)}{12}
Multiply 3 times 4.
24x^{2}-26x-8=2\left(3x-4\right)\left(4x+1\right)
Cancel out 12, the greatest common factor in 24 and 12.
x ^ 2 -\frac{13}{12}x -\frac{1}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 24
r + s = \frac{13}{12} rs = -\frac{1}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{13}{24} - u s = \frac{13}{24} + u
Two numbers r and s sum up to \frac{13}{12} exactly when the average of the two numbers is \frac{1}{2}*\frac{13}{12} = \frac{13}{24}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{13}{24} - u) (\frac{13}{24} + u) = -\frac{1}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{1}{3}
\frac{169}{576} - u^2 = -\frac{1}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{1}{3}-\frac{169}{576} = -\frac{361}{576}
Simplify the expression by subtracting \frac{169}{576} on both sides
u^2 = \frac{361}{576} u = \pm\sqrt{\frac{361}{576}} = \pm \frac{19}{24}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{13}{24} - \frac{19}{24} = -0.250 s = \frac{13}{24} + \frac{19}{24} = 1.333
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.