24 x ^ { 2 } - 14 x + 2 = 0 \quad ( m
Solve for x
x = \frac{1}{4} = 0.25
x = \frac{1}{3} = 0.3333333333333333
Solve for m (complex solution)
m\in \mathrm{C}
x=\frac{1}{4}\text{ or }x=\frac{1}{3}
Solve for m
m\in \mathrm{R}
x=\frac{1}{3}\text{ or }x=\frac{1}{4}
Graph
Share
Copied to clipboard
24x^{2}-14x+2=0
Anything times zero gives zero.
12x^{2}-7x+1=0
Divide both sides by 2.
a+b=-7 ab=12\times 1=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 12x^{2}+ax+bx+1. To find a and b, set up a system to be solved.
-1,-12 -2,-6 -3,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 12.
-1-12=-13 -2-6=-8 -3-4=-7
Calculate the sum for each pair.
a=-4 b=-3
The solution is the pair that gives sum -7.
\left(12x^{2}-4x\right)+\left(-3x+1\right)
Rewrite 12x^{2}-7x+1 as \left(12x^{2}-4x\right)+\left(-3x+1\right).
4x\left(3x-1\right)-\left(3x-1\right)
Factor out 4x in the first and -1 in the second group.
\left(3x-1\right)\left(4x-1\right)
Factor out common term 3x-1 by using distributive property.
x=\frac{1}{3} x=\frac{1}{4}
To find equation solutions, solve 3x-1=0 and 4x-1=0.
24x^{2}-14x+2=0
Anything times zero gives zero.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 24\times 2}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, -14 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 24\times 2}}{2\times 24}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-96\times 2}}{2\times 24}
Multiply -4 times 24.
x=\frac{-\left(-14\right)±\sqrt{196-192}}{2\times 24}
Multiply -96 times 2.
x=\frac{-\left(-14\right)±\sqrt{4}}{2\times 24}
Add 196 to -192.
x=\frac{-\left(-14\right)±2}{2\times 24}
Take the square root of 4.
x=\frac{14±2}{2\times 24}
The opposite of -14 is 14.
x=\frac{14±2}{48}
Multiply 2 times 24.
x=\frac{16}{48}
Now solve the equation x=\frac{14±2}{48} when ± is plus. Add 14 to 2.
x=\frac{1}{3}
Reduce the fraction \frac{16}{48} to lowest terms by extracting and canceling out 16.
x=\frac{12}{48}
Now solve the equation x=\frac{14±2}{48} when ± is minus. Subtract 2 from 14.
x=\frac{1}{4}
Reduce the fraction \frac{12}{48} to lowest terms by extracting and canceling out 12.
x=\frac{1}{3} x=\frac{1}{4}
The equation is now solved.
24x^{2}-14x+2=0
Anything times zero gives zero.
24x^{2}-14x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
\frac{24x^{2}-14x}{24}=-\frac{2}{24}
Divide both sides by 24.
x^{2}+\left(-\frac{14}{24}\right)x=-\frac{2}{24}
Dividing by 24 undoes the multiplication by 24.
x^{2}-\frac{7}{12}x=-\frac{2}{24}
Reduce the fraction \frac{-14}{24} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{12}x=-\frac{1}{12}
Reduce the fraction \frac{-2}{24} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{12}x+\left(-\frac{7}{24}\right)^{2}=-\frac{1}{12}+\left(-\frac{7}{24}\right)^{2}
Divide -\frac{7}{12}, the coefficient of the x term, by 2 to get -\frac{7}{24}. Then add the square of -\frac{7}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{12}x+\frac{49}{576}=-\frac{1}{12}+\frac{49}{576}
Square -\frac{7}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{12}x+\frac{49}{576}=\frac{1}{576}
Add -\frac{1}{12} to \frac{49}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{24}\right)^{2}=\frac{1}{576}
Factor x^{2}-\frac{7}{12}x+\frac{49}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{24}\right)^{2}}=\sqrt{\frac{1}{576}}
Take the square root of both sides of the equation.
x-\frac{7}{24}=\frac{1}{24} x-\frac{7}{24}=-\frac{1}{24}
Simplify.
x=\frac{1}{3} x=\frac{1}{4}
Add \frac{7}{24} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}