Factor
\left(4x+3\right)\left(6x+5\right)
Evaluate
\left(4x+3\right)\left(6x+5\right)
Graph
Share
Copied to clipboard
a+b=38 ab=24\times 15=360
Factor the expression by grouping. First, the expression needs to be rewritten as 24x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
1,360 2,180 3,120 4,90 5,72 6,60 8,45 9,40 10,36 12,30 15,24 18,20
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 360.
1+360=361 2+180=182 3+120=123 4+90=94 5+72=77 6+60=66 8+45=53 9+40=49 10+36=46 12+30=42 15+24=39 18+20=38
Calculate the sum for each pair.
a=18 b=20
The solution is the pair that gives sum 38.
\left(24x^{2}+18x\right)+\left(20x+15\right)
Rewrite 24x^{2}+38x+15 as \left(24x^{2}+18x\right)+\left(20x+15\right).
6x\left(4x+3\right)+5\left(4x+3\right)
Factor out 6x in the first and 5 in the second group.
\left(4x+3\right)\left(6x+5\right)
Factor out common term 4x+3 by using distributive property.
24x^{2}+38x+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-38±\sqrt{38^{2}-4\times 24\times 15}}{2\times 24}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-38±\sqrt{1444-4\times 24\times 15}}{2\times 24}
Square 38.
x=\frac{-38±\sqrt{1444-96\times 15}}{2\times 24}
Multiply -4 times 24.
x=\frac{-38±\sqrt{1444-1440}}{2\times 24}
Multiply -96 times 15.
x=\frac{-38±\sqrt{4}}{2\times 24}
Add 1444 to -1440.
x=\frac{-38±2}{2\times 24}
Take the square root of 4.
x=\frac{-38±2}{48}
Multiply 2 times 24.
x=-\frac{36}{48}
Now solve the equation x=\frac{-38±2}{48} when ± is plus. Add -38 to 2.
x=-\frac{3}{4}
Reduce the fraction \frac{-36}{48} to lowest terms by extracting and canceling out 12.
x=-\frac{40}{48}
Now solve the equation x=\frac{-38±2}{48} when ± is minus. Subtract 2 from -38.
x=-\frac{5}{6}
Reduce the fraction \frac{-40}{48} to lowest terms by extracting and canceling out 8.
24x^{2}+38x+15=24\left(x-\left(-\frac{3}{4}\right)\right)\left(x-\left(-\frac{5}{6}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{3}{4} for x_{1} and -\frac{5}{6} for x_{2}.
24x^{2}+38x+15=24\left(x+\frac{3}{4}\right)\left(x+\frac{5}{6}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
24x^{2}+38x+15=24\times \frac{4x+3}{4}\left(x+\frac{5}{6}\right)
Add \frac{3}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
24x^{2}+38x+15=24\times \frac{4x+3}{4}\times \frac{6x+5}{6}
Add \frac{5}{6} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
24x^{2}+38x+15=24\times \frac{\left(4x+3\right)\left(6x+5\right)}{4\times 6}
Multiply \frac{4x+3}{4} times \frac{6x+5}{6} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
24x^{2}+38x+15=24\times \frac{\left(4x+3\right)\left(6x+5\right)}{24}
Multiply 4 times 6.
24x^{2}+38x+15=\left(4x+3\right)\left(6x+5\right)
Cancel out 24, the greatest common factor in 24 and 24.
x ^ 2 +\frac{19}{12}x +\frac{5}{8} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 24
r + s = -\frac{19}{12} rs = \frac{5}{8}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{19}{24} - u s = -\frac{19}{24} + u
Two numbers r and s sum up to -\frac{19}{12} exactly when the average of the two numbers is \frac{1}{2}*-\frac{19}{12} = -\frac{19}{24}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{19}{24} - u) (-\frac{19}{24} + u) = \frac{5}{8}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{5}{8}
\frac{361}{576} - u^2 = \frac{5}{8}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{5}{8}-\frac{361}{576} = -\frac{1}{576}
Simplify the expression by subtracting \frac{361}{576} on both sides
u^2 = \frac{1}{576} u = \pm\sqrt{\frac{1}{576}} = \pm \frac{1}{24}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{19}{24} - \frac{1}{24} = -0.833 s = -\frac{19}{24} + \frac{1}{24} = -0.750
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}