Solve for k
k=\frac{3}{4}=0.75
k = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Share
Copied to clipboard
24k^{2}-50k+24=0
Add 24 to both sides.
12k^{2}-25k+12=0
Divide both sides by 2.
a+b=-25 ab=12\times 12=144
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 12k^{2}+ak+bk+12. To find a and b, set up a system to be solved.
-1,-144 -2,-72 -3,-48 -4,-36 -6,-24 -8,-18 -9,-16 -12,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 144.
-1-144=-145 -2-72=-74 -3-48=-51 -4-36=-40 -6-24=-30 -8-18=-26 -9-16=-25 -12-12=-24
Calculate the sum for each pair.
a=-16 b=-9
The solution is the pair that gives sum -25.
\left(12k^{2}-16k\right)+\left(-9k+12\right)
Rewrite 12k^{2}-25k+12 as \left(12k^{2}-16k\right)+\left(-9k+12\right).
4k\left(3k-4\right)-3\left(3k-4\right)
Factor out 4k in the first and -3 in the second group.
\left(3k-4\right)\left(4k-3\right)
Factor out common term 3k-4 by using distributive property.
k=\frac{4}{3} k=\frac{3}{4}
To find equation solutions, solve 3k-4=0 and 4k-3=0.
24k^{2}-50k=-24
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
24k^{2}-50k-\left(-24\right)=-24-\left(-24\right)
Add 24 to both sides of the equation.
24k^{2}-50k-\left(-24\right)=0
Subtracting -24 from itself leaves 0.
24k^{2}-50k+24=0
Subtract -24 from 0.
k=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 24\times 24}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, -50 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-50\right)±\sqrt{2500-4\times 24\times 24}}{2\times 24}
Square -50.
k=\frac{-\left(-50\right)±\sqrt{2500-96\times 24}}{2\times 24}
Multiply -4 times 24.
k=\frac{-\left(-50\right)±\sqrt{2500-2304}}{2\times 24}
Multiply -96 times 24.
k=\frac{-\left(-50\right)±\sqrt{196}}{2\times 24}
Add 2500 to -2304.
k=\frac{-\left(-50\right)±14}{2\times 24}
Take the square root of 196.
k=\frac{50±14}{2\times 24}
The opposite of -50 is 50.
k=\frac{50±14}{48}
Multiply 2 times 24.
k=\frac{64}{48}
Now solve the equation k=\frac{50±14}{48} when ± is plus. Add 50 to 14.
k=\frac{4}{3}
Reduce the fraction \frac{64}{48} to lowest terms by extracting and canceling out 16.
k=\frac{36}{48}
Now solve the equation k=\frac{50±14}{48} when ± is minus. Subtract 14 from 50.
k=\frac{3}{4}
Reduce the fraction \frac{36}{48} to lowest terms by extracting and canceling out 12.
k=\frac{4}{3} k=\frac{3}{4}
The equation is now solved.
24k^{2}-50k=-24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{24k^{2}-50k}{24}=-\frac{24}{24}
Divide both sides by 24.
k^{2}+\left(-\frac{50}{24}\right)k=-\frac{24}{24}
Dividing by 24 undoes the multiplication by 24.
k^{2}-\frac{25}{12}k=-\frac{24}{24}
Reduce the fraction \frac{-50}{24} to lowest terms by extracting and canceling out 2.
k^{2}-\frac{25}{12}k=-1
Divide -24 by 24.
k^{2}-\frac{25}{12}k+\left(-\frac{25}{24}\right)^{2}=-1+\left(-\frac{25}{24}\right)^{2}
Divide -\frac{25}{12}, the coefficient of the x term, by 2 to get -\frac{25}{24}. Then add the square of -\frac{25}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-\frac{25}{12}k+\frac{625}{576}=-1+\frac{625}{576}
Square -\frac{25}{24} by squaring both the numerator and the denominator of the fraction.
k^{2}-\frac{25}{12}k+\frac{625}{576}=\frac{49}{576}
Add -1 to \frac{625}{576}.
\left(k-\frac{25}{24}\right)^{2}=\frac{49}{576}
Factor k^{2}-\frac{25}{12}k+\frac{625}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-\frac{25}{24}\right)^{2}}=\sqrt{\frac{49}{576}}
Take the square root of both sides of the equation.
k-\frac{25}{24}=\frac{7}{24} k-\frac{25}{24}=-\frac{7}{24}
Simplify.
k=\frac{4}{3} k=\frac{3}{4}
Add \frac{25}{24} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}