Solve for a
a=\frac{-85+5\sqrt{8567}i}{24}\approx -3.541666667+19.282935389i
a=\frac{-5\sqrt{8567}i-85}{24}\approx -3.541666667-19.282935389i
Share
Copied to clipboard
24a^{2}+170a+9225=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-170±\sqrt{170^{2}-4\times 24\times 9225}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, 170 for b, and 9225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-170±\sqrt{28900-4\times 24\times 9225}}{2\times 24}
Square 170.
a=\frac{-170±\sqrt{28900-96\times 9225}}{2\times 24}
Multiply -4 times 24.
a=\frac{-170±\sqrt{28900-885600}}{2\times 24}
Multiply -96 times 9225.
a=\frac{-170±\sqrt{-856700}}{2\times 24}
Add 28900 to -885600.
a=\frac{-170±10\sqrt{8567}i}{2\times 24}
Take the square root of -856700.
a=\frac{-170±10\sqrt{8567}i}{48}
Multiply 2 times 24.
a=\frac{-170+10\sqrt{8567}i}{48}
Now solve the equation a=\frac{-170±10\sqrt{8567}i}{48} when ± is plus. Add -170 to 10i\sqrt{8567}.
a=\frac{-85+5\sqrt{8567}i}{24}
Divide -170+10i\sqrt{8567} by 48.
a=\frac{-10\sqrt{8567}i-170}{48}
Now solve the equation a=\frac{-170±10\sqrt{8567}i}{48} when ± is minus. Subtract 10i\sqrt{8567} from -170.
a=\frac{-5\sqrt{8567}i-85}{24}
Divide -170-10i\sqrt{8567} by 48.
a=\frac{-85+5\sqrt{8567}i}{24} a=\frac{-5\sqrt{8567}i-85}{24}
The equation is now solved.
24a^{2}+170a+9225=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
24a^{2}+170a+9225-9225=-9225
Subtract 9225 from both sides of the equation.
24a^{2}+170a=-9225
Subtracting 9225 from itself leaves 0.
\frac{24a^{2}+170a}{24}=-\frac{9225}{24}
Divide both sides by 24.
a^{2}+\frac{170}{24}a=-\frac{9225}{24}
Dividing by 24 undoes the multiplication by 24.
a^{2}+\frac{85}{12}a=-\frac{9225}{24}
Reduce the fraction \frac{170}{24} to lowest terms by extracting and canceling out 2.
a^{2}+\frac{85}{12}a=-\frac{3075}{8}
Reduce the fraction \frac{-9225}{24} to lowest terms by extracting and canceling out 3.
a^{2}+\frac{85}{12}a+\left(\frac{85}{24}\right)^{2}=-\frac{3075}{8}+\left(\frac{85}{24}\right)^{2}
Divide \frac{85}{12}, the coefficient of the x term, by 2 to get \frac{85}{24}. Then add the square of \frac{85}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{85}{12}a+\frac{7225}{576}=-\frac{3075}{8}+\frac{7225}{576}
Square \frac{85}{24} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{85}{12}a+\frac{7225}{576}=-\frac{214175}{576}
Add -\frac{3075}{8} to \frac{7225}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{85}{24}\right)^{2}=-\frac{214175}{576}
Factor a^{2}+\frac{85}{12}a+\frac{7225}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{85}{24}\right)^{2}}=\sqrt{-\frac{214175}{576}}
Take the square root of both sides of the equation.
a+\frac{85}{24}=\frac{5\sqrt{8567}i}{24} a+\frac{85}{24}=-\frac{5\sqrt{8567}i}{24}
Simplify.
a=\frac{-85+5\sqrt{8567}i}{24} a=\frac{-5\sqrt{8567}i-85}{24}
Subtract \frac{85}{24} from both sides of the equation.
x ^ 2 +\frac{85}{12}x +\frac{3075}{8} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 24
r + s = -\frac{85}{12} rs = \frac{3075}{8}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{85}{24} - u s = -\frac{85}{24} + u
Two numbers r and s sum up to -\frac{85}{12} exactly when the average of the two numbers is \frac{1}{2}*-\frac{85}{12} = -\frac{85}{24}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{85}{24} - u) (-\frac{85}{24} + u) = \frac{3075}{8}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{3075}{8}
\frac{7225}{576} - u^2 = \frac{3075}{8}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{3075}{8}-\frac{7225}{576} = \frac{214175}{576}
Simplify the expression by subtracting \frac{7225}{576} on both sides
u^2 = -\frac{214175}{576} u = \pm\sqrt{-\frac{214175}{576}} = \pm \frac{\sqrt{214175}}{24}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{85}{24} - \frac{\sqrt{214175}}{24}i = -3.542 - 19.283i s = -\frac{85}{24} + \frac{\sqrt{214175}}{24}i = -3.542 + 19.283i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}