Solve for x
x=-\frac{24}{31}\approx -0.774193548
Graph
Share
Copied to clipboard
72x+24-\left(2x-5\right)+16=2\left(3x+1\right)+2x-5
Use the distributive property to multiply 24 by 3x+1.
72x+24-2x-\left(-5\right)+16=2\left(3x+1\right)+2x-5
To find the opposite of 2x-5, find the opposite of each term.
72x+24-2x+5+16=2\left(3x+1\right)+2x-5
The opposite of -5 is 5.
70x+24+5+16=2\left(3x+1\right)+2x-5
Combine 72x and -2x to get 70x.
70x+29+16=2\left(3x+1\right)+2x-5
Add 24 and 5 to get 29.
70x+45=2\left(3x+1\right)+2x-5
Add 29 and 16 to get 45.
70x+45=6x+2+2x-5
Use the distributive property to multiply 2 by 3x+1.
70x+45=8x+2-5
Combine 6x and 2x to get 8x.
70x+45=8x-3
Subtract 5 from 2 to get -3.
70x+45-8x=-3
Subtract 8x from both sides.
62x+45=-3
Combine 70x and -8x to get 62x.
62x=-3-45
Subtract 45 from both sides.
62x=-48
Subtract 45 from -3 to get -48.
x=\frac{-48}{62}
Divide both sides by 62.
x=-\frac{24}{31}
Reduce the fraction \frac{-48}{62} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}