Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

24x^{2}=98+8
Add 8 to both sides.
24x^{2}=106
Add 98 and 8 to get 106.
x^{2}=\frac{106}{24}
Divide both sides by 24.
x^{2}=\frac{53}{12}
Reduce the fraction \frac{106}{24} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{159}}{6} x=-\frac{\sqrt{159}}{6}
Take the square root of both sides of the equation.
24x^{2}-8-98=0
Subtract 98 from both sides.
24x^{2}-106=0
Subtract 98 from -8 to get -106.
x=\frac{0±\sqrt{0^{2}-4\times 24\left(-106\right)}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, 0 for b, and -106 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 24\left(-106\right)}}{2\times 24}
Square 0.
x=\frac{0±\sqrt{-96\left(-106\right)}}{2\times 24}
Multiply -4 times 24.
x=\frac{0±\sqrt{10176}}{2\times 24}
Multiply -96 times -106.
x=\frac{0±8\sqrt{159}}{2\times 24}
Take the square root of 10176.
x=\frac{0±8\sqrt{159}}{48}
Multiply 2 times 24.
x=\frac{\sqrt{159}}{6}
Now solve the equation x=\frac{0±8\sqrt{159}}{48} when ± is plus.
x=-\frac{\sqrt{159}}{6}
Now solve the equation x=\frac{0±8\sqrt{159}}{48} when ± is minus.
x=\frac{\sqrt{159}}{6} x=-\frac{\sqrt{159}}{6}
The equation is now solved.