Solve for x (complex solution)
x=\frac{-23+\sqrt{47}i}{24}\approx -0.958333333+0.285652275i
x=\frac{-\sqrt{47}i-23}{24}\approx -0.958333333-0.285652275i
Graph
Share
Copied to clipboard
24x^{2}+46x+24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-46±\sqrt{46^{2}-4\times 24\times 24}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, 46 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-46±\sqrt{2116-4\times 24\times 24}}{2\times 24}
Square 46.
x=\frac{-46±\sqrt{2116-96\times 24}}{2\times 24}
Multiply -4 times 24.
x=\frac{-46±\sqrt{2116-2304}}{2\times 24}
Multiply -96 times 24.
x=\frac{-46±\sqrt{-188}}{2\times 24}
Add 2116 to -2304.
x=\frac{-46±2\sqrt{47}i}{2\times 24}
Take the square root of -188.
x=\frac{-46±2\sqrt{47}i}{48}
Multiply 2 times 24.
x=\frac{-46+2\sqrt{47}i}{48}
Now solve the equation x=\frac{-46±2\sqrt{47}i}{48} when ± is plus. Add -46 to 2i\sqrt{47}.
x=\frac{-23+\sqrt{47}i}{24}
Divide -46+2i\sqrt{47} by 48.
x=\frac{-2\sqrt{47}i-46}{48}
Now solve the equation x=\frac{-46±2\sqrt{47}i}{48} when ± is minus. Subtract 2i\sqrt{47} from -46.
x=\frac{-\sqrt{47}i-23}{24}
Divide -46-2i\sqrt{47} by 48.
x=\frac{-23+\sqrt{47}i}{24} x=\frac{-\sqrt{47}i-23}{24}
The equation is now solved.
24x^{2}+46x+24=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
24x^{2}+46x+24-24=-24
Subtract 24 from both sides of the equation.
24x^{2}+46x=-24
Subtracting 24 from itself leaves 0.
\frac{24x^{2}+46x}{24}=-\frac{24}{24}
Divide both sides by 24.
x^{2}+\frac{46}{24}x=-\frac{24}{24}
Dividing by 24 undoes the multiplication by 24.
x^{2}+\frac{23}{12}x=-\frac{24}{24}
Reduce the fraction \frac{46}{24} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{23}{12}x=-1
Divide -24 by 24.
x^{2}+\frac{23}{12}x+\left(\frac{23}{24}\right)^{2}=-1+\left(\frac{23}{24}\right)^{2}
Divide \frac{23}{12}, the coefficient of the x term, by 2 to get \frac{23}{24}. Then add the square of \frac{23}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{23}{12}x+\frac{529}{576}=-1+\frac{529}{576}
Square \frac{23}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{23}{12}x+\frac{529}{576}=-\frac{47}{576}
Add -1 to \frac{529}{576}.
\left(x+\frac{23}{24}\right)^{2}=-\frac{47}{576}
Factor x^{2}+\frac{23}{12}x+\frac{529}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{23}{24}\right)^{2}}=\sqrt{-\frac{47}{576}}
Take the square root of both sides of the equation.
x+\frac{23}{24}=\frac{\sqrt{47}i}{24} x+\frac{23}{24}=-\frac{\sqrt{47}i}{24}
Simplify.
x=\frac{-23+\sqrt{47}i}{24} x=\frac{-\sqrt{47}i-23}{24}
Subtract \frac{23}{24} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}