Solve for θ
\theta =360-\frac{8640}{r^{2}}
r\neq 0
Solve for r
r=24\sqrt{-\frac{15}{\theta -360}}
r=-24\sqrt{-\frac{15}{\theta -360}}\text{, }\theta <360
Share
Copied to clipboard
24=r^{2}\times \frac{360-\theta }{360}
Cancel out \pi on both sides.
8640=r^{2}\left(360-\theta \right)
Multiply both sides of the equation by 360.
8640=360r^{2}-r^{2}\theta
Use the distributive property to multiply r^{2} by 360-\theta .
360r^{2}-r^{2}\theta =8640
Swap sides so that all variable terms are on the left hand side.
-r^{2}\theta =8640-360r^{2}
Subtract 360r^{2} from both sides.
\left(-r^{2}\right)\theta =8640-360r^{2}
The equation is in standard form.
\frac{\left(-r^{2}\right)\theta }{-r^{2}}=\frac{8640-360r^{2}}{-r^{2}}
Divide both sides by -r^{2}.
\theta =\frac{8640-360r^{2}}{-r^{2}}
Dividing by -r^{2} undoes the multiplication by -r^{2}.
\theta =360-\frac{8640}{r^{2}}
Divide 8640-360r^{2} by -r^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}