Solve for v
v=9
Share
Copied to clipboard
v\times 24=\left(v+3\right)\times 18
Variable v cannot be equal to any of the values -3,0 since division by zero is not defined. Multiply both sides of the equation by v\left(v+3\right), the least common multiple of v+3,v.
v\times 24=18v+54
Use the distributive property to multiply v+3 by 18.
v\times 24-18v=54
Subtract 18v from both sides.
6v=54
Combine v\times 24 and -18v to get 6v.
v=\frac{54}{6}
Divide both sides by 6.
v=9
Divide 54 by 6 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}