Evaluate
\frac{239}{240}\approx 0.995833333
Factor
\frac{239}{2 ^ {4} \cdot 3 \cdot 5} = 0.9958333333333333
Share
Copied to clipboard
\frac{238\times 239}{238\times 239+238}
Divide 238 by \frac{238\times 239+238}{239} by multiplying 238 by the reciprocal of \frac{238\times 239+238}{239}.
\frac{56882}{238\times 239+238}
Multiply 238 and 239 to get 56882.
\frac{56882}{56882+238}
Multiply 238 and 239 to get 56882.
\frac{56882}{57120}
Add 56882 and 238 to get 57120.
\frac{239}{240}
Reduce the fraction \frac{56882}{57120} to lowest terms by extracting and canceling out 238.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}