Evaluate
\frac{236}{11}\approx 21.454545455
Factor
\frac{2 ^ {2} \cdot 59}{11} = 21\frac{5}{11} = 21.454545454545453
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)236}\\\end{array}
Use the 1^{st} digit 2 from dividend 236
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)236}\\\end{array}
Since 2 is less than 11, use the next digit 3 from dividend 236 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)236}\\\end{array}
Use the 2^{nd} digit 3 from dividend 236
\begin{array}{l}\phantom{11)}02\phantom{4}\\11\overline{)236}\\\phantom{11)}\underline{\phantom{}22\phantom{9}}\\\phantom{11)9}1\\\end{array}
Find closest multiple of 11 to 23. We see that 2 \times 11 = 22 is the nearest. Now subtract 22 from 23 to get reminder 1. Add 2 to quotient.
\begin{array}{l}\phantom{11)}02\phantom{5}\\11\overline{)236}\\\phantom{11)}\underline{\phantom{}22\phantom{9}}\\\phantom{11)9}16\\\end{array}
Use the 3^{rd} digit 6 from dividend 236
\begin{array}{l}\phantom{11)}021\phantom{6}\\11\overline{)236}\\\phantom{11)}\underline{\phantom{}22\phantom{9}}\\\phantom{11)9}16\\\phantom{11)}\underline{\phantom{9}11\phantom{}}\\\phantom{11)99}5\\\end{array}
Find closest multiple of 11 to 16. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 16 to get reminder 5. Add 1 to quotient.
\text{Quotient: }21 \text{Reminder: }5
Since 5 is less than 11, stop the division. The reminder is 5. The topmost line 021 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}