Evaluate
\frac{23456789}{25}=938271.56
Factor
\frac{23456789}{5 ^ {2}} = 938271\frac{14}{25} = 938271.56
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)23456789}\\\end{array}
Use the 1^{st} digit 2 from dividend 23456789
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)23456789}\\\end{array}
Since 2 is less than 25, use the next digit 3 from dividend 23456789 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)23456789}\\\end{array}
Use the 2^{nd} digit 3 from dividend 23456789
\begin{array}{l}\phantom{25)}00\phantom{4}\\25\overline{)23456789}\\\end{array}
Since 23 is less than 25, use the next digit 4 from dividend 23456789 and add 0 to the quotient
\begin{array}{l}\phantom{25)}00\phantom{5}\\25\overline{)23456789}\\\end{array}
Use the 3^{rd} digit 4 from dividend 23456789
\begin{array}{l}\phantom{25)}009\phantom{6}\\25\overline{)23456789}\\\phantom{25)}\underline{\phantom{}225\phantom{99999}}\\\phantom{25)99}9\\\end{array}
Find closest multiple of 25 to 234. We see that 9 \times 25 = 225 is the nearest. Now subtract 225 from 234 to get reminder 9. Add 9 to quotient.
\begin{array}{l}\phantom{25)}009\phantom{7}\\25\overline{)23456789}\\\phantom{25)}\underline{\phantom{}225\phantom{99999}}\\\phantom{25)99}95\\\end{array}
Use the 4^{th} digit 5 from dividend 23456789
\begin{array}{l}\phantom{25)}0093\phantom{8}\\25\overline{)23456789}\\\phantom{25)}\underline{\phantom{}225\phantom{99999}}\\\phantom{25)99}95\\\phantom{25)}\underline{\phantom{99}75\phantom{9999}}\\\phantom{25)99}20\\\end{array}
Find closest multiple of 25 to 95. We see that 3 \times 25 = 75 is the nearest. Now subtract 75 from 95 to get reminder 20. Add 3 to quotient.
\begin{array}{l}\phantom{25)}0093\phantom{9}\\25\overline{)23456789}\\\phantom{25)}\underline{\phantom{}225\phantom{99999}}\\\phantom{25)99}95\\\phantom{25)}\underline{\phantom{99}75\phantom{9999}}\\\phantom{25)99}206\\\end{array}
Use the 5^{th} digit 6 from dividend 23456789
\begin{array}{l}\phantom{25)}00938\phantom{10}\\25\overline{)23456789}\\\phantom{25)}\underline{\phantom{}225\phantom{99999}}\\\phantom{25)99}95\\\phantom{25)}\underline{\phantom{99}75\phantom{9999}}\\\phantom{25)99}206\\\phantom{25)}\underline{\phantom{99}200\phantom{999}}\\\phantom{25)9999}6\\\end{array}
Find closest multiple of 25 to 206. We see that 8 \times 25 = 200 is the nearest. Now subtract 200 from 206 to get reminder 6. Add 8 to quotient.
\begin{array}{l}\phantom{25)}00938\phantom{11}\\25\overline{)23456789}\\\phantom{25)}\underline{\phantom{}225\phantom{99999}}\\\phantom{25)99}95\\\phantom{25)}\underline{\phantom{99}75\phantom{9999}}\\\phantom{25)99}206\\\phantom{25)}\underline{\phantom{99}200\phantom{999}}\\\phantom{25)9999}67\\\end{array}
Use the 6^{th} digit 7 from dividend 23456789
\begin{array}{l}\phantom{25)}009382\phantom{12}\\25\overline{)23456789}\\\phantom{25)}\underline{\phantom{}225\phantom{99999}}\\\phantom{25)99}95\\\phantom{25)}\underline{\phantom{99}75\phantom{9999}}\\\phantom{25)99}206\\\phantom{25)}\underline{\phantom{99}200\phantom{999}}\\\phantom{25)9999}67\\\phantom{25)}\underline{\phantom{9999}50\phantom{99}}\\\phantom{25)9999}17\\\end{array}
Find closest multiple of 25 to 67. We see that 2 \times 25 = 50 is the nearest. Now subtract 50 from 67 to get reminder 17. Add 2 to quotient.
\begin{array}{l}\phantom{25)}009382\phantom{13}\\25\overline{)23456789}\\\phantom{25)}\underline{\phantom{}225\phantom{99999}}\\\phantom{25)99}95\\\phantom{25)}\underline{\phantom{99}75\phantom{9999}}\\\phantom{25)99}206\\\phantom{25)}\underline{\phantom{99}200\phantom{999}}\\\phantom{25)9999}67\\\phantom{25)}\underline{\phantom{9999}50\phantom{99}}\\\phantom{25)9999}178\\\end{array}
Use the 7^{th} digit 8 from dividend 23456789
\begin{array}{l}\phantom{25)}0093827\phantom{14}\\25\overline{)23456789}\\\phantom{25)}\underline{\phantom{}225\phantom{99999}}\\\phantom{25)99}95\\\phantom{25)}\underline{\phantom{99}75\phantom{9999}}\\\phantom{25)99}206\\\phantom{25)}\underline{\phantom{99}200\phantom{999}}\\\phantom{25)9999}67\\\phantom{25)}\underline{\phantom{9999}50\phantom{99}}\\\phantom{25)9999}178\\\phantom{25)}\underline{\phantom{9999}175\phantom{9}}\\\phantom{25)999999}3\\\end{array}
Find closest multiple of 25 to 178. We see that 7 \times 25 = 175 is the nearest. Now subtract 175 from 178 to get reminder 3. Add 7 to quotient.
\begin{array}{l}\phantom{25)}0093827\phantom{15}\\25\overline{)23456789}\\\phantom{25)}\underline{\phantom{}225\phantom{99999}}\\\phantom{25)99}95\\\phantom{25)}\underline{\phantom{99}75\phantom{9999}}\\\phantom{25)99}206\\\phantom{25)}\underline{\phantom{99}200\phantom{999}}\\\phantom{25)9999}67\\\phantom{25)}\underline{\phantom{9999}50\phantom{99}}\\\phantom{25)9999}178\\\phantom{25)}\underline{\phantom{9999}175\phantom{9}}\\\phantom{25)999999}39\\\end{array}
Use the 8^{th} digit 9 from dividend 23456789
\begin{array}{l}\phantom{25)}00938271\phantom{16}\\25\overline{)23456789}\\\phantom{25)}\underline{\phantom{}225\phantom{99999}}\\\phantom{25)99}95\\\phantom{25)}\underline{\phantom{99}75\phantom{9999}}\\\phantom{25)99}206\\\phantom{25)}\underline{\phantom{99}200\phantom{999}}\\\phantom{25)9999}67\\\phantom{25)}\underline{\phantom{9999}50\phantom{99}}\\\phantom{25)9999}178\\\phantom{25)}\underline{\phantom{9999}175\phantom{9}}\\\phantom{25)999999}39\\\phantom{25)}\underline{\phantom{999999}25\phantom{}}\\\phantom{25)999999}14\\\end{array}
Find closest multiple of 25 to 39. We see that 1 \times 25 = 25 is the nearest. Now subtract 25 from 39 to get reminder 14. Add 1 to quotient.
\text{Quotient: }938271 \text{Reminder: }14
Since 14 is less than 25, stop the division. The reminder is 14. The topmost line 00938271 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 938271.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}