Evaluate
\frac{2325}{166}\approx 14.006024096
Factor
\frac{3 \cdot 5 ^ {2} \cdot 31}{2 \cdot 83} = 14\frac{1}{166} = 14.006024096385541
Share
Copied to clipboard
\begin{array}{l}\phantom{166)}\phantom{1}\\166\overline{)2325}\\\end{array}
Use the 1^{st} digit 2 from dividend 2325
\begin{array}{l}\phantom{166)}0\phantom{2}\\166\overline{)2325}\\\end{array}
Since 2 is less than 166, use the next digit 3 from dividend 2325 and add 0 to the quotient
\begin{array}{l}\phantom{166)}0\phantom{3}\\166\overline{)2325}\\\end{array}
Use the 2^{nd} digit 3 from dividend 2325
\begin{array}{l}\phantom{166)}00\phantom{4}\\166\overline{)2325}\\\end{array}
Since 23 is less than 166, use the next digit 2 from dividend 2325 and add 0 to the quotient
\begin{array}{l}\phantom{166)}00\phantom{5}\\166\overline{)2325}\\\end{array}
Use the 3^{rd} digit 2 from dividend 2325
\begin{array}{l}\phantom{166)}001\phantom{6}\\166\overline{)2325}\\\phantom{166)}\underline{\phantom{}166\phantom{9}}\\\phantom{166)9}66\\\end{array}
Find closest multiple of 166 to 232. We see that 1 \times 166 = 166 is the nearest. Now subtract 166 from 232 to get reminder 66. Add 1 to quotient.
\begin{array}{l}\phantom{166)}001\phantom{7}\\166\overline{)2325}\\\phantom{166)}\underline{\phantom{}166\phantom{9}}\\\phantom{166)9}665\\\end{array}
Use the 4^{th} digit 5 from dividend 2325
\begin{array}{l}\phantom{166)}0014\phantom{8}\\166\overline{)2325}\\\phantom{166)}\underline{\phantom{}166\phantom{9}}\\\phantom{166)9}665\\\phantom{166)}\underline{\phantom{9}664\phantom{}}\\\phantom{166)999}1\\\end{array}
Find closest multiple of 166 to 665. We see that 4 \times 166 = 664 is the nearest. Now subtract 664 from 665 to get reminder 1. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }1
Since 1 is less than 166, stop the division. The reminder is 1. The topmost line 0014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}