Evaluate
\frac{11500}{9}\approx 1277.777777778
Factor
\frac{2 ^ {2} \cdot 5 ^ {3} \cdot 23}{3 ^ {2}} = 1277\frac{7}{9} = 1277.7777777777778
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)23000}\\\end{array}
Use the 1^{st} digit 2 from dividend 23000
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)23000}\\\end{array}
Since 2 is less than 18, use the next digit 3 from dividend 23000 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)23000}\\\end{array}
Use the 2^{nd} digit 3 from dividend 23000
\begin{array}{l}\phantom{18)}01\phantom{4}\\18\overline{)23000}\\\phantom{18)}\underline{\phantom{}18\phantom{999}}\\\phantom{18)9}5\\\end{array}
Find closest multiple of 18 to 23. We see that 1 \times 18 = 18 is the nearest. Now subtract 18 from 23 to get reminder 5. Add 1 to quotient.
\begin{array}{l}\phantom{18)}01\phantom{5}\\18\overline{)23000}\\\phantom{18)}\underline{\phantom{}18\phantom{999}}\\\phantom{18)9}50\\\end{array}
Use the 3^{rd} digit 0 from dividend 23000
\begin{array}{l}\phantom{18)}012\phantom{6}\\18\overline{)23000}\\\phantom{18)}\underline{\phantom{}18\phantom{999}}\\\phantom{18)9}50\\\phantom{18)}\underline{\phantom{9}36\phantom{99}}\\\phantom{18)9}14\\\end{array}
Find closest multiple of 18 to 50. We see that 2 \times 18 = 36 is the nearest. Now subtract 36 from 50 to get reminder 14. Add 2 to quotient.
\begin{array}{l}\phantom{18)}012\phantom{7}\\18\overline{)23000}\\\phantom{18)}\underline{\phantom{}18\phantom{999}}\\\phantom{18)9}50\\\phantom{18)}\underline{\phantom{9}36\phantom{99}}\\\phantom{18)9}140\\\end{array}
Use the 4^{th} digit 0 from dividend 23000
\begin{array}{l}\phantom{18)}0127\phantom{8}\\18\overline{)23000}\\\phantom{18)}\underline{\phantom{}18\phantom{999}}\\\phantom{18)9}50\\\phantom{18)}\underline{\phantom{9}36\phantom{99}}\\\phantom{18)9}140\\\phantom{18)}\underline{\phantom{9}126\phantom{9}}\\\phantom{18)99}14\\\end{array}
Find closest multiple of 18 to 140. We see that 7 \times 18 = 126 is the nearest. Now subtract 126 from 140 to get reminder 14. Add 7 to quotient.
\begin{array}{l}\phantom{18)}0127\phantom{9}\\18\overline{)23000}\\\phantom{18)}\underline{\phantom{}18\phantom{999}}\\\phantom{18)9}50\\\phantom{18)}\underline{\phantom{9}36\phantom{99}}\\\phantom{18)9}140\\\phantom{18)}\underline{\phantom{9}126\phantom{9}}\\\phantom{18)99}140\\\end{array}
Use the 5^{th} digit 0 from dividend 23000
\begin{array}{l}\phantom{18)}01277\phantom{10}\\18\overline{)23000}\\\phantom{18)}\underline{\phantom{}18\phantom{999}}\\\phantom{18)9}50\\\phantom{18)}\underline{\phantom{9}36\phantom{99}}\\\phantom{18)9}140\\\phantom{18)}\underline{\phantom{9}126\phantom{9}}\\\phantom{18)99}140\\\phantom{18)}\underline{\phantom{99}126\phantom{}}\\\phantom{18)999}14\\\end{array}
Find closest multiple of 18 to 140. We see that 7 \times 18 = 126 is the nearest. Now subtract 126 from 140 to get reminder 14. Add 7 to quotient.
\text{Quotient: }1277 \text{Reminder: }14
Since 14 is less than 18, stop the division. The reminder is 14. The topmost line 01277 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1277.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}