Evaluate
25a^{5}-13a^{3}+11
Differentiate w.r.t. a
a^{2}\left(125a^{2}-39\right)
Share
Copied to clipboard
35a^{5}-8a^{3}-10a^{5}+11-5a^{3}
Combine 23a^{5} and 12a^{5} to get 35a^{5}.
25a^{5}-8a^{3}+11-5a^{3}
Combine 35a^{5} and -10a^{5} to get 25a^{5}.
25a^{5}-13a^{3}+11
Combine -8a^{3} and -5a^{3} to get -13a^{3}.
\frac{\mathrm{d}}{\mathrm{d}a}(35a^{5}-8a^{3}-10a^{5}+11-5a^{3})
Combine 23a^{5} and 12a^{5} to get 35a^{5}.
\frac{\mathrm{d}}{\mathrm{d}a}(25a^{5}-8a^{3}+11-5a^{3})
Combine 35a^{5} and -10a^{5} to get 25a^{5}.
\frac{\mathrm{d}}{\mathrm{d}a}(25a^{5}-13a^{3}+11)
Combine -8a^{3} and -5a^{3} to get -13a^{3}.
5\times 25a^{5-1}+3\left(-13\right)a^{3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
125a^{5-1}+3\left(-13\right)a^{3-1}
Multiply 5 times 25.
125a^{4}+3\left(-13\right)a^{3-1}
Subtract 1 from 5.
125a^{4}-39a^{3-1}
Multiply 3 times -13.
125a^{4}-39a^{2}
Subtract 1 from 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}