Evaluate
-\frac{23}{25}-\frac{414}{25}i=-0.92-16.56i
Real Part
-\frac{23}{25} = -0.92
Share
Copied to clipboard
23\times \frac{\left(2-3i\right)\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)}
Multiply both numerator and denominator of \frac{2-3i}{4+3i} by the complex conjugate of the denominator, 4-3i.
23\times \frac{\left(2-3i\right)\left(4-3i\right)}{4^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
23\times \frac{\left(2-3i\right)\left(4-3i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
23\times \frac{2\times 4+2\times \left(-3i\right)-3i\times 4-3\left(-3\right)i^{2}}{25}
Multiply complex numbers 2-3i and 4-3i like you multiply binomials.
23\times \frac{2\times 4+2\times \left(-3i\right)-3i\times 4-3\left(-3\right)\left(-1\right)}{25}
By definition, i^{2} is -1.
23\times \frac{8-6i-12i-9}{25}
Do the multiplications in 2\times 4+2\times \left(-3i\right)-3i\times 4-3\left(-3\right)\left(-1\right).
23\times \frac{8-9+\left(-6-12\right)i}{25}
Combine the real and imaginary parts in 8-6i-12i-9.
23\times \frac{-1-18i}{25}
Do the additions in 8-9+\left(-6-12\right)i.
23\left(-\frac{1}{25}-\frac{18}{25}i\right)
Divide -1-18i by 25 to get -\frac{1}{25}-\frac{18}{25}i.
23\left(-\frac{1}{25}\right)+23\times \left(-\frac{18}{25}i\right)
Multiply 23 times -\frac{1}{25}-\frac{18}{25}i.
-\frac{23}{25}-\frac{414}{25}i
Do the multiplications.
Re(23\times \frac{\left(2-3i\right)\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)})
Multiply both numerator and denominator of \frac{2-3i}{4+3i} by the complex conjugate of the denominator, 4-3i.
Re(23\times \frac{\left(2-3i\right)\left(4-3i\right)}{4^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(23\times \frac{\left(2-3i\right)\left(4-3i\right)}{25})
By definition, i^{2} is -1. Calculate the denominator.
Re(23\times \frac{2\times 4+2\times \left(-3i\right)-3i\times 4-3\left(-3\right)i^{2}}{25})
Multiply complex numbers 2-3i and 4-3i like you multiply binomials.
Re(23\times \frac{2\times 4+2\times \left(-3i\right)-3i\times 4-3\left(-3\right)\left(-1\right)}{25})
By definition, i^{2} is -1.
Re(23\times \frac{8-6i-12i-9}{25})
Do the multiplications in 2\times 4+2\times \left(-3i\right)-3i\times 4-3\left(-3\right)\left(-1\right).
Re(23\times \frac{8-9+\left(-6-12\right)i}{25})
Combine the real and imaginary parts in 8-6i-12i-9.
Re(23\times \frac{-1-18i}{25})
Do the additions in 8-9+\left(-6-12\right)i.
Re(23\left(-\frac{1}{25}-\frac{18}{25}i\right))
Divide -1-18i by 25 to get -\frac{1}{25}-\frac{18}{25}i.
Re(23\left(-\frac{1}{25}\right)+23\times \left(-\frac{18}{25}i\right))
Multiply 23 times -\frac{1}{25}-\frac{18}{25}i.
Re(-\frac{23}{25}-\frac{414}{25}i)
Do the multiplications in 23\left(-\frac{1}{25}\right)+23\times \left(-\frac{18}{25}i\right).
-\frac{23}{25}
The real part of -\frac{23}{25}-\frac{414}{25}i is -\frac{23}{25}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}