Evaluate
\frac{229}{105}\approx 2.180952381
Factor
\frac{229}{3 \cdot 5 \cdot 7} = 2\frac{19}{105} = 2.1809523809523808
Share
Copied to clipboard
\begin{array}{l}\phantom{105)}\phantom{1}\\105\overline{)229}\\\end{array}
Use the 1^{st} digit 2 from dividend 229
\begin{array}{l}\phantom{105)}0\phantom{2}\\105\overline{)229}\\\end{array}
Since 2 is less than 105, use the next digit 2 from dividend 229 and add 0 to the quotient
\begin{array}{l}\phantom{105)}0\phantom{3}\\105\overline{)229}\\\end{array}
Use the 2^{nd} digit 2 from dividend 229
\begin{array}{l}\phantom{105)}00\phantom{4}\\105\overline{)229}\\\end{array}
Since 22 is less than 105, use the next digit 9 from dividend 229 and add 0 to the quotient
\begin{array}{l}\phantom{105)}00\phantom{5}\\105\overline{)229}\\\end{array}
Use the 3^{rd} digit 9 from dividend 229
\begin{array}{l}\phantom{105)}002\phantom{6}\\105\overline{)229}\\\phantom{105)}\underline{\phantom{}210\phantom{}}\\\phantom{105)9}19\\\end{array}
Find closest multiple of 105 to 229. We see that 2 \times 105 = 210 is the nearest. Now subtract 210 from 229 to get reminder 19. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }19
Since 19 is less than 105, stop the division. The reminder is 19. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}