Solve for p
p = -\frac{226648}{45} = -5036\frac{28}{45} \approx -5036.622222222
Share
Copied to clipboard
45360=30.4-9p
Multiply both sides of the equation by 20.
30.4-9p=45360
Swap sides so that all variable terms are on the left hand side.
-9p=45360-30.4
Subtract 30.4 from both sides.
-9p=45329.6
Subtract 30.4 from 45360 to get 45329.6.
p=\frac{45329.6}{-9}
Divide both sides by -9.
p=\frac{453296}{-90}
Expand \frac{45329.6}{-9} by multiplying both numerator and the denominator by 10.
p=-\frac{226648}{45}
Reduce the fraction \frac{453296}{-90} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}