Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{c}\phantom{\times99}2255555\\\underline{\times\phantom{9999}32525}\\\end{array}
First line up the numbers vertically and match the places from the right like this.
\begin{array}{c}\phantom{\times99}2255555\\\underline{\times\phantom{9999}32525}\\\phantom{\times9}11277775\\\end{array}
Now multiply the first number with the 1^{st} digit in 2^{nd} number to get intermediate results. That is Multiply 2255555 with 5. Write the result 11277775 at the end leaving 0 spaces to the right like this.
\begin{array}{c}\phantom{\times99}2255555\\\underline{\times\phantom{9999}32525}\\\phantom{\times9}11277775\\\phantom{\times9}4511110\phantom{9}\\\end{array}
Now multiply the first number with the 2^{nd} digit in 2^{nd} number to get intermediate results. That is Multiply 2255555 with 2. Write the result 4511110 at the end leaving 1 spaces to the right like this.
\begin{array}{c}\phantom{\times99}2255555\\\underline{\times\phantom{9999}32525}\\\phantom{\times9}11277775\\\phantom{\times9}4511110\phantom{9}\\\phantom{\times}11277775\phantom{99}\\\end{array}
Now multiply the first number with the 3^{rd} digit in 2^{nd} number to get intermediate results. That is Multiply 2255555 with 5. Write the result 11277775 at the end leaving 2 spaces to the right like this.
\begin{array}{c}\phantom{\times99}2255555\\\underline{\times\phantom{9999}32525}\\\phantom{\times9}11277775\\\phantom{\times9}4511110\phantom{9}\\\phantom{\times}11277775\phantom{99}\\\phantom{\times}4511110\phantom{999}\\\end{array}
Now multiply the first number with the 4^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 2255555 with 2. Write the result 4511110 at the end leaving 3 spaces to the right like this.
\begin{array}{c}\phantom{\times99}2255555\\\underline{\times\phantom{9999}32525}\\\phantom{\times9}11277775\\\phantom{\times9}4511110\phantom{9}\\\phantom{\times}11277775\phantom{99}\\\phantom{\times}4511110\phantom{999}\\\underline{\phantom{\times}6766665\phantom{9999}}\\\end{array}
Now multiply the first number with the 5^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 2255555 with 3. Write the result 6766665 at the end leaving 4 spaces to the right like this.
\begin{array}{c}\phantom{\times99}2255555\\\underline{\times\phantom{9999}32525}\\\phantom{\times9}11277775\\\phantom{\times9}4511110\phantom{9}\\\phantom{\times}11277775\phantom{99}\\\phantom{\times}4511110\phantom{999}\\\underline{\phantom{\times}6766665\phantom{9999}}\\\phantom{\times}347482343\end{array}
Now add the intermediate results to get final answer.