Solve for x (complex solution)
x=\frac{22500000}{y^{z}}
z=0\text{ or }y\neq 0
Solve for x
x=\frac{22500000}{y^{z}}
y>0\text{ or }\left(Denominator(z)\text{bmod}2=1\text{ and }y<0\right)
Solve for y (complex solution)
y=e^{-\frac{2\pi n_{1}iRe(z)}{\left(Re(z)\right)^{2}+\left(Im(z)\right)^{2}}-\frac{2\pi n_{1}Im(z)}{\left(Re(z)\right)^{2}+\left(Im(z)\right)^{2}}+\frac{arg(\frac{1}{x})Im(z)+iarg(\frac{1}{x})Re(z)}{\left(Re(z)\right)^{2}+\left(Im(z)\right)^{2}}}\times \left(\frac{22500000}{|x|}\right)^{\frac{Re(z)-iIm(z)}{\left(Re(z)\right)^{2}+\left(Im(z)\right)^{2}}}
n_{1}\in \mathrm{Z}
x\neq 0
Solve for y
\left\{\begin{matrix}y=\left(\frac{22500000}{x}\right)^{\frac{1}{z}}\text{, }&\left(Numerator(z)\text{bmod}2=1\text{ and }Denominator(z)\text{bmod}2=1\text{ and }\left(\frac{22500000}{x}\right)^{\frac{1}{z}}\neq 0\text{ and }x<0\right)\text{ or }\left(\left(\frac{22500000}{x}\right)^{\frac{1}{z}}>0\text{ and }z\neq 0\text{ and }x>0\right)\text{ or }\left(\left(\frac{22500000}{x}\right)^{\frac{1}{z}}<0\text{ and }z\neq 0\text{ and }Denominator(z)\text{bmod}2=1\text{ and }x>0\right)\\y=-\left(\frac{22500000}{x}\right)^{\frac{1}{z}}\text{, }&\left(x<0\text{ and }Numerator(z)\text{bmod}2=1\text{ and }Numerator(z)\text{bmod}2=0\text{ and }Denominator(z)\text{bmod}2=1\text{ and }\left(\frac{22500000}{x}\right)^{\frac{1}{z}}\neq 0\right)\text{ or }\left(x>0\text{ and }z\neq 0\text{ and }\left(\frac{22500000}{x}\right)^{\frac{1}{z}}<0\text{ and }Numerator(z)\text{bmod}2=0\right)\text{ or }\left(x>0\text{ and }z\neq 0\text{ and }\left(\frac{22500000}{x}\right)^{\frac{1}{z}}>0\text{ and }Numerator(z)\text{bmod}2=0\text{ and }Denominator(z)\text{bmod}2=1\right)\\y\neq 0\text{, }&x=22500000\text{ and }z=0\end{matrix}\right.
Share
Copied to clipboard
xy^{z}=22500000
Swap sides so that all variable terms are on the left hand side.
y^{z}x=22500000
The equation is in standard form.
\frac{y^{z}x}{y^{z}}=\frac{22500000}{y^{z}}
Divide both sides by y^{z}.
x=\frac{22500000}{y^{z}}
Dividing by y^{z} undoes the multiplication by y^{z}.
xy^{z}=22500000
Swap sides so that all variable terms are on the left hand side.
y^{z}x=22500000
The equation is in standard form.
\frac{y^{z}x}{y^{z}}=\frac{22500000}{y^{z}}
Divide both sides by y^{z}.
x=\frac{22500000}{y^{z}}
Dividing by y^{z} undoes the multiplication by y^{z}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}