Evaluate
\frac{45000}{7}\approx 6428.571428571
Factor
\frac{2 ^ {3} \cdot 3 ^ {2} \cdot 5 ^ {4}}{7} = 6428\frac{4}{7} = 6428.571428571428
Share
Copied to clipboard
\begin{array}{l}\phantom{35)}\phantom{1}\\35\overline{)225000}\\\end{array}
Use the 1^{st} digit 2 from dividend 225000
\begin{array}{l}\phantom{35)}0\phantom{2}\\35\overline{)225000}\\\end{array}
Since 2 is less than 35, use the next digit 2 from dividend 225000 and add 0 to the quotient
\begin{array}{l}\phantom{35)}0\phantom{3}\\35\overline{)225000}\\\end{array}
Use the 2^{nd} digit 2 from dividend 225000
\begin{array}{l}\phantom{35)}00\phantom{4}\\35\overline{)225000}\\\end{array}
Since 22 is less than 35, use the next digit 5 from dividend 225000 and add 0 to the quotient
\begin{array}{l}\phantom{35)}00\phantom{5}\\35\overline{)225000}\\\end{array}
Use the 3^{rd} digit 5 from dividend 225000
\begin{array}{l}\phantom{35)}006\phantom{6}\\35\overline{)225000}\\\phantom{35)}\underline{\phantom{}210\phantom{999}}\\\phantom{35)9}15\\\end{array}
Find closest multiple of 35 to 225. We see that 6 \times 35 = 210 is the nearest. Now subtract 210 from 225 to get reminder 15. Add 6 to quotient.
\begin{array}{l}\phantom{35)}006\phantom{7}\\35\overline{)225000}\\\phantom{35)}\underline{\phantom{}210\phantom{999}}\\\phantom{35)9}150\\\end{array}
Use the 4^{th} digit 0 from dividend 225000
\begin{array}{l}\phantom{35)}0064\phantom{8}\\35\overline{)225000}\\\phantom{35)}\underline{\phantom{}210\phantom{999}}\\\phantom{35)9}150\\\phantom{35)}\underline{\phantom{9}140\phantom{99}}\\\phantom{35)99}10\\\end{array}
Find closest multiple of 35 to 150. We see that 4 \times 35 = 140 is the nearest. Now subtract 140 from 150 to get reminder 10. Add 4 to quotient.
\begin{array}{l}\phantom{35)}0064\phantom{9}\\35\overline{)225000}\\\phantom{35)}\underline{\phantom{}210\phantom{999}}\\\phantom{35)9}150\\\phantom{35)}\underline{\phantom{9}140\phantom{99}}\\\phantom{35)99}100\\\end{array}
Use the 5^{th} digit 0 from dividend 225000
\begin{array}{l}\phantom{35)}00642\phantom{10}\\35\overline{)225000}\\\phantom{35)}\underline{\phantom{}210\phantom{999}}\\\phantom{35)9}150\\\phantom{35)}\underline{\phantom{9}140\phantom{99}}\\\phantom{35)99}100\\\phantom{35)}\underline{\phantom{999}70\phantom{9}}\\\phantom{35)999}30\\\end{array}
Find closest multiple of 35 to 100. We see that 2 \times 35 = 70 is the nearest. Now subtract 70 from 100 to get reminder 30. Add 2 to quotient.
\begin{array}{l}\phantom{35)}00642\phantom{11}\\35\overline{)225000}\\\phantom{35)}\underline{\phantom{}210\phantom{999}}\\\phantom{35)9}150\\\phantom{35)}\underline{\phantom{9}140\phantom{99}}\\\phantom{35)99}100\\\phantom{35)}\underline{\phantom{999}70\phantom{9}}\\\phantom{35)999}300\\\end{array}
Use the 6^{th} digit 0 from dividend 225000
\begin{array}{l}\phantom{35)}006428\phantom{12}\\35\overline{)225000}\\\phantom{35)}\underline{\phantom{}210\phantom{999}}\\\phantom{35)9}150\\\phantom{35)}\underline{\phantom{9}140\phantom{99}}\\\phantom{35)99}100\\\phantom{35)}\underline{\phantom{999}70\phantom{9}}\\\phantom{35)999}300\\\phantom{35)}\underline{\phantom{999}280\phantom{}}\\\phantom{35)9999}20\\\end{array}
Find closest multiple of 35 to 300. We see that 8 \times 35 = 280 is the nearest. Now subtract 280 from 300 to get reminder 20. Add 8 to quotient.
\text{Quotient: }6428 \text{Reminder: }20
Since 20 is less than 35, stop the division. The reminder is 20. The topmost line 006428 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6428.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}