Solve for x
x=150
x=-150
Graph
Share
Copied to clipboard
-0.01x^{2}=-225
Subtract 225 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-225}{-0.01}
Divide both sides by -0.01.
x^{2}=\frac{-22500}{-1}
Expand \frac{-225}{-0.01} by multiplying both numerator and the denominator by 100.
x^{2}=22500
Fraction \frac{-22500}{-1} can be simplified to 22500 by removing the negative sign from both the numerator and the denominator.
x=150 x=-150
Take the square root of both sides of the equation.
-0.01x^{2}+225=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-0.01\right)\times 225}}{2\left(-0.01\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.01 for a, 0 for b, and 225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-0.01\right)\times 225}}{2\left(-0.01\right)}
Square 0.
x=\frac{0±\sqrt{0.04\times 225}}{2\left(-0.01\right)}
Multiply -4 times -0.01.
x=\frac{0±\sqrt{9}}{2\left(-0.01\right)}
Multiply 0.04 times 225.
x=\frac{0±3}{2\left(-0.01\right)}
Take the square root of 9.
x=\frac{0±3}{-0.02}
Multiply 2 times -0.01.
x=-150
Now solve the equation x=\frac{0±3}{-0.02} when ± is plus. Divide 3 by -0.02 by multiplying 3 by the reciprocal of -0.02.
x=150
Now solve the equation x=\frac{0±3}{-0.02} when ± is minus. Divide -3 by -0.02 by multiplying -3 by the reciprocal of -0.02.
x=-150 x=150
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}