Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+34x+225=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-34±\sqrt{34^{2}-4\left(-1\right)\times 225}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-34±\sqrt{1156-4\left(-1\right)\times 225}}{2\left(-1\right)}
Square 34.
x=\frac{-34±\sqrt{1156+4\times 225}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-34±\sqrt{1156+900}}{2\left(-1\right)}
Multiply 4 times 225.
x=\frac{-34±\sqrt{2056}}{2\left(-1\right)}
Add 1156 to 900.
x=\frac{-34±2\sqrt{514}}{2\left(-1\right)}
Take the square root of 2056.
x=\frac{-34±2\sqrt{514}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{514}-34}{-2}
Now solve the equation x=\frac{-34±2\sqrt{514}}{-2} when ± is plus. Add -34 to 2\sqrt{514}.
x=17-\sqrt{514}
Divide -34+2\sqrt{514} by -2.
x=\frac{-2\sqrt{514}-34}{-2}
Now solve the equation x=\frac{-34±2\sqrt{514}}{-2} when ± is minus. Subtract 2\sqrt{514} from -34.
x=\sqrt{514}+17
Divide -34-2\sqrt{514} by -2.
-x^{2}+34x+225=-\left(x-\left(17-\sqrt{514}\right)\right)\left(x-\left(\sqrt{514}+17\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 17-\sqrt{514} for x_{1} and 17+\sqrt{514} for x_{2}.