Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

225x^{2}-166=0
Add -360 and 194 to get -166.
225x^{2}=166
Add 166 to both sides. Anything plus zero gives itself.
x^{2}=\frac{166}{225}
Divide both sides by 225.
x=\frac{\sqrt{166}}{15} x=-\frac{\sqrt{166}}{15}
Take the square root of both sides of the equation.
225x^{2}-166=0
Add -360 and 194 to get -166.
x=\frac{0±\sqrt{0^{2}-4\times 225\left(-166\right)}}{2\times 225}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 225 for a, 0 for b, and -166 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 225\left(-166\right)}}{2\times 225}
Square 0.
x=\frac{0±\sqrt{-900\left(-166\right)}}{2\times 225}
Multiply -4 times 225.
x=\frac{0±\sqrt{149400}}{2\times 225}
Multiply -900 times -166.
x=\frac{0±30\sqrt{166}}{2\times 225}
Take the square root of 149400.
x=\frac{0±30\sqrt{166}}{450}
Multiply 2 times 225.
x=\frac{\sqrt{166}}{15}
Now solve the equation x=\frac{0±30\sqrt{166}}{450} when ± is plus.
x=-\frac{\sqrt{166}}{15}
Now solve the equation x=\frac{0±30\sqrt{166}}{450} when ± is minus.
x=\frac{\sqrt{166}}{15} x=-\frac{\sqrt{166}}{15}
The equation is now solved.