Evaluate
\frac{225}{56}\approx 4.017857143
Factor
\frac{3 ^ {2} \cdot 5 ^ {2}}{2 ^ {3} \cdot 7} = 4\frac{1}{56} = 4.017857142857143
Share
Copied to clipboard
\begin{array}{l}\phantom{56)}\phantom{1}\\56\overline{)225}\\\end{array}
Use the 1^{st} digit 2 from dividend 225
\begin{array}{l}\phantom{56)}0\phantom{2}\\56\overline{)225}\\\end{array}
Since 2 is less than 56, use the next digit 2 from dividend 225 and add 0 to the quotient
\begin{array}{l}\phantom{56)}0\phantom{3}\\56\overline{)225}\\\end{array}
Use the 2^{nd} digit 2 from dividend 225
\begin{array}{l}\phantom{56)}00\phantom{4}\\56\overline{)225}\\\end{array}
Since 22 is less than 56, use the next digit 5 from dividend 225 and add 0 to the quotient
\begin{array}{l}\phantom{56)}00\phantom{5}\\56\overline{)225}\\\end{array}
Use the 3^{rd} digit 5 from dividend 225
\begin{array}{l}\phantom{56)}004\phantom{6}\\56\overline{)225}\\\phantom{56)}\underline{\phantom{}224\phantom{}}\\\phantom{56)99}1\\\end{array}
Find closest multiple of 56 to 225. We see that 4 \times 56 = 224 is the nearest. Now subtract 224 from 225 to get reminder 1. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }1
Since 1 is less than 56, stop the division. The reminder is 1. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}