Evaluate
\frac{75}{4}=18.75
Factor
\frac{3 \cdot 5 ^ {2}}{2 ^ {2}} = 18\frac{3}{4} = 18.75
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)225}\\\end{array}
Use the 1^{st} digit 2 from dividend 225
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)225}\\\end{array}
Since 2 is less than 12, use the next digit 2 from dividend 225 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)225}\\\end{array}
Use the 2^{nd} digit 2 from dividend 225
\begin{array}{l}\phantom{12)}01\phantom{4}\\12\overline{)225}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)}10\\\end{array}
Find closest multiple of 12 to 22. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 22 to get reminder 10. Add 1 to quotient.
\begin{array}{l}\phantom{12)}01\phantom{5}\\12\overline{)225}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)}105\\\end{array}
Use the 3^{rd} digit 5 from dividend 225
\begin{array}{l}\phantom{12)}018\phantom{6}\\12\overline{)225}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)}105\\\phantom{12)}\underline{\phantom{9}96\phantom{}}\\\phantom{12)99}9\\\end{array}
Find closest multiple of 12 to 105. We see that 8 \times 12 = 96 is the nearest. Now subtract 96 from 105 to get reminder 9. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }9
Since 9 is less than 12, stop the division. The reminder is 9. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}