Evaluate
-\frac{55}{3}\approx -18.333333333
Factor
-\frac{55}{3} = -18\frac{1}{3} = -18.333333333333332
Share
Copied to clipboard
\frac{225}{25}+\frac{4}{15}-\frac{3}{5}-3^{3}
Calculate 5 to the power of 2 and get 25.
9+\frac{4}{15}-\frac{3}{5}-3^{3}
Divide 225 by 25 to get 9.
\frac{135}{15}+\frac{4}{15}-\frac{3}{5}-3^{3}
Convert 9 to fraction \frac{135}{15}.
\frac{135+4}{15}-\frac{3}{5}-3^{3}
Since \frac{135}{15} and \frac{4}{15} have the same denominator, add them by adding their numerators.
\frac{139}{15}-\frac{3}{5}-3^{3}
Add 135 and 4 to get 139.
\frac{139}{15}-\frac{9}{15}-3^{3}
Least common multiple of 15 and 5 is 15. Convert \frac{139}{15} and \frac{3}{5} to fractions with denominator 15.
\frac{139-9}{15}-3^{3}
Since \frac{139}{15} and \frac{9}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{130}{15}-3^{3}
Subtract 9 from 139 to get 130.
\frac{26}{3}-3^{3}
Reduce the fraction \frac{130}{15} to lowest terms by extracting and canceling out 5.
\frac{26}{3}-27
Calculate 3 to the power of 3 and get 27.
\frac{26}{3}-\frac{81}{3}
Convert 27 to fraction \frac{81}{3}.
\frac{26-81}{3}
Since \frac{26}{3} and \frac{81}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{55}{3}
Subtract 81 from 26 to get -55.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}