Evaluate
15
Factor
3\times 5
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)225}\\\end{array}
Use the 1^{st} digit 2 from dividend 225
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)225}\\\end{array}
Since 2 is less than 15, use the next digit 2 from dividend 225 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)225}\\\end{array}
Use the 2^{nd} digit 2 from dividend 225
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)225}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}7\\\end{array}
Find closest multiple of 15 to 22. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 22 to get reminder 7. Add 1 to quotient.
\begin{array}{l}\phantom{15)}01\phantom{5}\\15\overline{)225}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}75\\\end{array}
Use the 3^{rd} digit 5 from dividend 225
\begin{array}{l}\phantom{15)}015\phantom{6}\\15\overline{)225}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}75\\\phantom{15)}\underline{\phantom{9}75\phantom{}}\\\phantom{15)999}0\\\end{array}
Find closest multiple of 15 to 75. We see that 5 \times 15 = 75 is the nearest. Now subtract 75 from 75 to get reminder 0. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }0
Since 0 is less than 15, stop the division. The reminder is 0. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}