Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

\pi r^{2}=22176
Swap sides so that all variable terms are on the left hand side.
\frac{\pi r^{2}}{\pi }=\frac{22176}{\pi }
Divide both sides by \pi .
r^{2}=\frac{22176}{\pi }
Dividing by \pi undoes the multiplication by \pi .
r=\frac{1848}{\sqrt{154\pi }} r=-\frac{1848}{\sqrt{154\pi }}
Take the square root of both sides of the equation.
\pi r^{2}=22176
Swap sides so that all variable terms are on the left hand side.
\pi r^{2}-22176=0
Subtract 22176 from both sides.
r=\frac{0±\sqrt{0^{2}-4\pi \left(-22176\right)}}{2\pi }
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi for a, 0 for b, and -22176 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\pi \left(-22176\right)}}{2\pi }
Square 0.
r=\frac{0±\sqrt{\left(-4\pi \right)\left(-22176\right)}}{2\pi }
Multiply -4 times \pi .
r=\frac{0±\sqrt{88704\pi }}{2\pi }
Multiply -4\pi times -22176.
r=\frac{0±24\sqrt{154\pi }}{2\pi }
Take the square root of 88704\pi .
r=\frac{1848}{\sqrt{154\pi }}
Now solve the equation r=\frac{0±24\sqrt{154\pi }}{2\pi } when ± is plus.
r=-\frac{1848}{\sqrt{154\pi }}
Now solve the equation r=\frac{0±24\sqrt{154\pi }}{2\pi } when ± is minus.
r=\frac{1848}{\sqrt{154\pi }} r=-\frac{1848}{\sqrt{154\pi }}
The equation is now solved.